HashMap源码分析(put/get)

一、前言

  1.本文基于JDK1.8源码分析,会贴出涉及的相关数据结构及源码。

  2.文中只涉及hashmap的put/get方法,代码理解附在注释上(直接看代码更清晰)。

  3.JDK1.8中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树。

二、数据结构

  1.单向链表

//单向链表,实现了Map.Entry接口
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
        
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        //判断两个node是否相等,key与value均相等则返回true
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

  2.红黑树

//红黑树(太多了,放一些属性及构造函数)
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
}

  3.位桶

transient Node<K,V>[] table;

 三、主要属性

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量

    static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比

    //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
    static final int TREEIFY_THRESHOLD = 8;

    static final int UNTREEIFY_THRESHOLD = 6;

    static final int MIN_TREEIFY_CAPACITY = 64;

    transient Node[] table;//存储元素的数组

    transient Set> entrySet;

    transient int size;//存放元素的个数

    transient int modCount;//被修改的次数fast-fail机制

    int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容

    final float loadFactor;//填充比(......后面略)

关于fast-fail可以看这篇https://blog.csdn.net/zymx14/article/details/78394464

四、put/get

  1.get方法

static final int hash(Object key) {
        int h;
        //增加随机度
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    } 
final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //hash & length-1 定位数组下标
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //检查首节点,hash与key均相等则返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //首节点是树节点,则hashmap是采用位桶+红黑树结构,调用TreeNode.getTreeNode(hash,key),遍历红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //链表结构查找
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

  2.put方法

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果tab为空或长度为0则重新分配容器大小
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        (n-1) & hash找到put位置,槽为空则直接put成为首节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //第一个节点的hash值与要加入的hash值相等,key也相等
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //第一个节点是树节点,即属于红黑树冲突处理
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //链表冲突处理
                //遍历链表  
                for (int binCount = 0; ; ++binCount) {
                    //e为空,表示到表尾也没找到相同节点,则新建节点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //判断新增节点后,链表长度是否到达阈值,到达则将链表转为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //判断节点是否相同
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //更新hash与key均相同节点的value值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }        

五、结语

  本文主要记录hashmap源码学习过程,只针对put/get方向性理解,有错误请指正,一起学习一起进步。

final Node[] resize() {
Node[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {//超过1>>30大小,无法扩容只能改变 阈值
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//新的容量为旧的2倍 最小也是16
newThr = oldThr << 1; // 扩容阈值加倍
}
else if (oldThr > 0)
newCap = oldThr;//oldCap=0 ,oldThr>0此时newThr=0
else { //oldCap=0,oldThr=0 相当于使用默认填充比和初始容量 初始化
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}

if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({rawtypes,unchecked})
Node[] newTab = (Node[])new Node[newCap];
//数组辅助到新的数组中,分红黑树和链表讨论
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
else { // preserve order
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

猜你喜欢

转载自www.cnblogs.com/ghoster/p/12613104.html
今日推荐