(Android) OkHttp3.10 源码学习笔记 8 Cahce get put分析&& CacheInterceptor分析

今天我们来分析OkHttp中的cache拦截器。使用cache的方简单如下

 OkHttpClient client = new OkHttpClient().newBuilder().cache(new Cache(new File("cache"), 24 * 1024 * 1024)).build();

进入cache类看一下,里面有一个InternalCache, 它实现了InternalCache这个接口,实现均调用了cache类的方法。

final InternalCache internalCache = new InternalCache() {
    @Override public Response get(Request request) throws IOException {
      return Cache.this.get(request);
    }

    @Override public CacheRequest put(Response response) throws IOException {
      return Cache.this.put(response);
    }

    @Override public void remove(Request request) throws IOException {
      Cache.this.remove(request);
    }

    @Override public void update(Response cached, Response network) {
      Cache.this.update(cached, network);
    }

    @Override public void trackConditionalCacheHit() {
      Cache.this.trackConditionalCacheHit();
    }

    @Override public void trackResponse(CacheStrategy cacheStrategy) {
      Cache.this.trackResponse(cacheStrategy);
    }
  }

Put方法

  @Nullable CacheRequest put(Response response) {
    String requestMethod = response.request().method();

    if (HttpMethod.invalidatesCache(response.request().method())) {
      try {
        remove(response.request());
      } catch (IOException ignored) {
        // The cache cannot be written.
      }
      return null;
    }
    if (!requestMethod.equals("GET")) {
      // Don't cache non-GET responses. We're technically allowed to cache
      // HEAD requests and some POST requests, but the complexity of doing
      // so is high and the benefit is low.
      return null;
    }

    if (HttpHeaders.hasVaryAll(response)) {
      return null;
    }

    Entry entry = new Entry(response);
    DiskLruCache.Editor editor = null;
    try {
      editor = cache.edit(key(response.request().url()));
      if (editor == null) {
        return null;
      }
      entry.writeTo(editor);
      return new CacheRequestImpl(editor);
    } catch (IOException e) {
      abortQuietly(editor);
      return null;
    }
  }

可以看出,OkHttp缓存的核心就是DiskLruCache。首先,put方法得到了request的request的method,如果不是get方法,则不去缓存。接着创建了Entry实例,这个Entry封装了一些url,protocol等等字段。

    Entry(Response response) {
      this.url = response.request().url().toString();
      this.varyHeaders = HttpHeaders.varyHeaders(response);
      this.requestMethod = response.request().method();
      this.protocol = response.protocol();
      this.code = response.code();
      this.message = response.message();
      this.responseHeaders = response.headers();
      this.handshake = response.handshake();
      this.sentRequestMillis = response.sentRequestAtMillis();
      this.receivedResponseMillis = response.receivedResponseAtMillis();
    }

接着,以url的md5值为key,写入了缓存。这里我们有一个疑问,这里只保存了url,header等信息,那最关键的response body保存在哪里了呢?我们看最后

 return new CacheRequestImpl(editor);

看一下这个类,这里保存了body,同时这里面还有一个lruCache

 CacheRequestImpl(final DiskLruCache.Editor editor) {
      this.editor = editor;
      this.cacheOut = editor.newSink(ENTRY_BODY);
      this.body = new ForwardingSink(cacheOut) {
        @Override public void close() throws IOException {
          synchronized (Cache.this) {
            if (done) {
              return;
            }
            done = true;
            writeSuccessCount++;
          }
          super.close();
          editor.commit();
        }
      };
    }

Get方法

先看看代码

@Nullable Response get(Request request) {
    String key = key(request.url());
    DiskLruCache.Snapshot snapshot;
    Entry entry;
    try {
      snapshot = cache.get(key);
      if (snapshot == null) {
        return null;
      }
    } catch (IOException e) {
      // Give up because the cache cannot be read.
      return null;
    }

    try {
      entry = new Entry(snapshot.getSource(ENTRY_METADATA));
    } catch (IOException e) {
      Util.closeQuietly(snapshot);
      return null;
    }

    Response response = entry.response(snapshot);

    if (!entry.matches(request, response)) {
      Util.closeQuietly(response.body());
      return null;
    }

    return response;
  }

这里定义了一个缓存快照,snapshot,表示某一时刻的缓存对象。还是老套路,根据key值获取缓存对象,保存在snapshot。然后赋值一个Entry对象,根据Entry获取我们的缓存对象,我们看一下entry的response方法

public Response response(DiskLruCache.Snapshot snapshot) {
      String contentType = responseHeaders.get("Content-Type");
      String contentLength = responseHeaders.get("Content-Length");
      Request cacheRequest = new Request.Builder()
          .url(url)
          .method(requestMethod, null)
          .headers(varyHeaders)
          .build();
      return new Response.Builder()
          .request(cacheRequest)
          .protocol(protocol)
          .code(code)
          .message(message)
          .headers(responseHeaders)
          .body(new CacheResponseBody(snapshot, contentType, contentLength))
          .handshake(handshake)
          .sentRequestAtMillis(sentRequestMillis)
          .receivedResponseAtMillis(receivedResponseMillis)
          .build();
    }
  }

这里首先进行了一些赋值,然后根据snapshot对象构造出了body,然后返回,这样get方法就解释完了。

CacheInterceptor

现在我们分析主要部分,缓存拦截器,主要看intercept方法。

  @Override public Response intercept(Chain chain) throws IOException {
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();

    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
      cache.trackResponse(strategy);
    }

    if (cacheCandidate != null && cacheResponse == null) {
      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    }

    // If we're forbidden from using the network and the cache is insufficient, fail.
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // If we don't need the network, we're done.
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }

    Response networkResponse = null;
    try {
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }

    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }

      if (HttpMethod.invalidatesCache(networkRequest.method())) {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }

    return response;
  }
首先通过request获取ca'che,然后获取了时间戳,然后构造了一个缓存策略,看看这个缓存策略是如何获取的
public CacheStrategy get() {
      CacheStrategy candidate = getCandidate();

      if (candidate.networkRequest != null && request.cacheControl().onlyIfCached()) {
        // We're forbidden from using the network and the cache is insufficient.
        return new CacheStrategy(null, null);
      }

      return candidate;
    }

这个方法也是一个空壳,去看实际的getCandidate方法

 /** Returns a strategy to use assuming the request can use the network. */
    private CacheStrategy getCandidate() {
      // No cached response.
      if (cacheResponse == null) {
        return new CacheStrategy(request, null);
      }

      // Drop the cached response if it's missing a required handshake.
      if (request.isHttps() && cacheResponse.handshake() == null) {
        return new CacheStrategy(request, null);
      }

      // If this response shouldn't have been stored, it should never be used
      // as a response source. This check should be redundant as long as the
      // persistence store is well-behaved and the rules are constant.
      if (!isCacheable(cacheResponse, request)) {
        return new CacheStrategy(request, null);
      }

      CacheControl requestCaching = request.cacheControl();
      if (requestCaching.noCache() || hasConditions(request)) {
        return new CacheStrategy(request, null);
      }

      CacheControl responseCaching = cacheResponse.cacheControl();
      if (responseCaching.immutable()) {
        return new CacheStrategy(null, cacheResponse);
      }

      long ageMillis = cacheResponseAge();
      long freshMillis = computeFreshnessLifetime();

      if (requestCaching.maxAgeSeconds() != -1) {
        freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
      }

      long minFreshMillis = 0;
      if (requestCaching.minFreshSeconds() != -1) {
        minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
      }

      long maxStaleMillis = 0;
      if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
        maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
      }

      if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
        Response.Builder builder = cacheResponse.newBuilder();
        if (ageMillis + minFreshMillis >= freshMillis) {
          builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
        }
        long oneDayMillis = 24 * 60 * 60 * 1000L;
        if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
          builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
        }
        return new CacheStrategy(null, builder.build());
      }

      // Find a condition to add to the request. If the condition is satisfied, the response body
      // will not be transmitted.
      String conditionName;
      String conditionValue;
      if (etag != null) {
        conditionName = "If-None-Match";
        conditionValue = etag;
      } else if (lastModified != null) {
        conditionName = "If-Modified-Since";
        conditionValue = lastModifiedString;
      } else if (servedDate != null) {
        conditionName = "If-Modified-Since";
        conditionValue = servedDateString;
      } else {
        return new CacheStrategy(request, null); // No condition! Make a regular request.
      }

      Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
      Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);

      Request conditionalRequest = request.newBuilder()
          .headers(conditionalRequestHeaders.build())
          .build();
      return new CacheStrategy(conditionalRequest, cacheResponse);
    }

这个方法比较长,最上面,根据cacheResponse是否为null,来决定是重新请求还是取缓存,后面进行了一系列判断,来决定是重新请求还是取cacheResponse。最后,根据条件添加了一些缓存header,然后返回了缓存策略。

接着回去intercept方法,在取得缓存策略以后,执行了 cache.trackResponse(strategy),来更新了缓存命中统计。

在禁止使用网络的情况下,有如下两种种可能

如果这里cache是不完整的,则构造一个504错误的response。

如果缓存正常,则返回缓存response

如果需要网络请求的时候,则执行proceed方法,将网络请求交给下一个拦截器。

 1.在得到response后,如果响应是304(Not modify),则从缓存中读取数据

 2.判断是否有响应体且缓存策略允许写入缓存,则写入缓存,为下一次取缓存准备

if (cache != null) {
  if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
    // Offer this request to the cache.
    CacheRequest cacheRequest = cache.put(response);
    return cacheWritingResponse(cacheRequest, response);
  }

3. 判断请求方式,如果是POST,PATCH等请求,则移除缓存

if (HttpMethod.invalidatesCache(networkRequest.method())) {
  try {
    cache.remove(networkRequest);
  } catch (IOException ignored) {
    // The cache cannot be written.
  }
}

虽然这个方法比较长,但逻辑比较清晰,看完源码后很容易理解全部过程。





猜你喜欢

转载自blog.csdn.net/zhouy1989/article/details/80727182