Datawhale零基础入门数据挖掘-Task3

特征工程目标

“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程能使得模型的性能得到提升,有时甚至在简单的模型上也能取得不错的效果。特征工程在机器学习中占有非常重要的作用,一般认为括特征构建、特征提取、特征选择三个部分。

对于特征进行进一步分析,并对于数据进行处理
完成对于特征工程的分析,并对于数据进行一些图表或者文字总结并打卡。

内容介绍

常见的特征工程包括:

异常处理:

  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;

特征归一化/标准化:

  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式: l o g ( 1 + x / x + m e d i a n ) log(1+x/x+median)

数据分桶:

  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;

缺失值处理:

  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;

特征构造:

  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。

特征筛选

  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互- 信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

降维

  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

Datawhale 零基础入门数据挖掘-Task 特征工程

代码示例

导入数据

# 引用相关模块
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
%matplotlib inline

# 读取数据
path = './datalab/231784/'
Train_data = pd.read_csv(path+'used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv(path+'used_car_testA_20200313.csv', sep=' ')
# 打印数据 的矩阵信息
print("Train_data:",Train_data.shape)
print("Test_data:",Test_data.shape)
运行结果
(150000, 31)
(50000, 30)
# 打印Train 数据集的前五行,也可通过传入参数 打印指定行数
Train_data.head()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 0 736 20040402 30.0 6 1.0 0.0 0.0 60 12.5 0.235676 0.101988 0.129549 0.022816 0.097462 -2.881803 2.804097 -2.420821 0.795292 0.914762
1 1 2262 20030301 40.0 1 2.0 0.0 0.0 0 15.0 0.264777 0.121004 0.135731 0.026597 0.020582 -4.900482 2.096338 -1.030483 -1.722674 0.245522
2 2 14874 20040403 115.0 15 1.0 0.0 0.0 163 12.5 0.251410 0.114912 0.165147 0.062173 0.027075 -4.846749 1.803559 1.565330 -0.832687 -0.229963
3 3 71865 19960908 109.0 10 0.0 0.0 1.0 193 15.0 0.274293 0.110300 0.121964 0.033395 0.000000 -4.509599 1.285940 -0.501868 -2.438353 -0.478699
4 4 111080 20120103 110.0 5 1.0 0.0 0.0 68 5.0 0.228036 0.073205 0.091880 0.078819 0.121534 -1.896240 0.910783 0.931110 2.834518 1.923482

5 rows × 31 columns

## 展示Train_data 数据集 有哪些列
Train_data.columns
#运行结果
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'seller', 'offerType', 'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3',
       'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12',
       'v_13', 'v_14'],
      dtype='object')
# 展示Test_data 数据有哪些列
Test_data.columns
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'seller', 'offerType', 'creatDate', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4',
       'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13',
       'v_14'],
      dtype='object')

删除异常值

# 这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        ## quantile() 分位值函数,跟去传入的值取,指定分位的值。
        ## data_ser.quantile(0.75)  data_ser.quantile(0.25) 分别取 四分之三分位值 和四分之一分位值
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        ## 最高上限 ????
        val_low = data_ser.quantile(0.25) - iqr
        ## 最低上限 ????
        val_up = data_ser.quantile(0.75) + iqr
        ## 最高上限规则 ????
        rule_low = (data_ser < val_low)
         ## 最低上限规则 ????
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n
发布了1 篇原创文章 · 获赞 0 · 访问量 9

猜你喜欢

转载自blog.csdn.net/weixin_43310806/article/details/105166940