Reconocimiento de dígitos escritos a mano en tensorflow2.0

Tengo que decir que tensorflow2.0 es mejor que 1.x
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os

#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# x: [60k, 28, 28], [10, 28, 28]
# y: [60k], [10k]
# 加载数据
(x, y), (x_test, y_test) = datasets.mnist.load_data()
# x: [0~255] => [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)

x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)

print(x.shape, y.shape, x.dtype, y.dtype)
print(tf.reduce_min(x), tf.reduce_max(x))
print(tf.reduce_min(y), tf.reduce_max(y))

train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
#print('batch:', sample[0].shape, sample[1].shape)

# [b, 784] => [b, 256] => [b, 128] => [b, 10]
# [dim_in, dim_out], [dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))

lr = 1e-3
with tf.device("cpu"):
    for epoch in range(10):  # iterate db for 10
        for step, (x, y) in enumerate(train_db):  # for every batch
            # x:[128, 28, 28]
            # y: [128]

            # [b, 28, 28] => [b, 28*28]
            x = tf.reshape(x, [-1, 28 * 28])  # -1:根据剩余维度计算

            with tf.GradientTape() as tape:  # tf.Variable计算梯度
                # x: [b, 28*28]
                # h1 = x@w1 + b1
                # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]
                h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                h1 = tf.nn.relu(h1)
                # [b, 256] => [b, 128]
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)
                # [b, 128] => [b, 10]
                out = h2 @ w3 + b3

                # compute loss
                # out: [b, 10]
                # y: [b] => [b, 10]
                y_onehot = tf.one_hot(y, depth=10)

                # mse = mean(sum(y-out)^2)
                # [b, 10]
                loss = tf.square(y_onehot - out)
                # mean: scalar
                loss = tf.reduce_mean(loss)

            # compute gradients
            grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
            # print(grads)
            # w1 = w1 - lr * w1_grad
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
            w3.assign_sub(lr * grads[4])
            b3.assign_sub(lr * grads[5])

            # if step % 100 == 0:
            #     print(epoch, step, 'loss:', float(loss))

        # test/evluation
        # [w1, b1, w2, b2, w3, b3]
        total_correct, total_num = 0, 0
        for step, (x, y) in enumerate(test_db):


            # [b, 28, 28] => [b, 28*28]
            x = tf.reshape(x, [-1, 28 * 28])

            # [b, 784] => [b, 256] => [b, 128] => [b, 10]
            h1 = tf.nn.relu(x @ w1 + b1)
            h2 = tf.nn.relu(h1 @ w2 + b2)
            out = h2 @ w3 + b3

            # out: [b, 10] ~ R
            # prob: [b, 10] ~ [0, 1]
            prob = tf.nn.softmax(out, axis=1)
            # [b, 10] => [b]
            # int64!!!
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            # y: [b]
            # [b], int32
            # print(pred.dtype, y.dtype)
            # 0=预测正确;1=预测错误
            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)

            total_correct += int(correct)
            total_num += x.shape[0]

        acc = total_correct / total_num
        print('test acc:', acc)


mejoramiento

El código usa api de alto nivel y luego profundiza el número de capas de red. Encontrará que la precisión del 95% se alcanza en la primera ronda. Esto es sorprendente. La red superficial anterior solo se ha entrenado para varias rondas con una precisión de aproximadamente 65%. .

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    return x, y


(x, y), (x_test, y_test) = datasets.mnist.load_data()
print(x.shape, y.shape)

batchsz = 128

# 让每一个x都对应一个y
db = tf.data.Dataset.from_tensor_slices((x, y))
# 混合顺序
db = db.map(preprocess).shuffle(10000).batch(batchsz)

db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
# 指定函数形成映射关系
db_test = db_test.map(preprocess).batch(batchsz)

db_iter = iter(db)
sample = next(db_iter)
print('batch:', sample[0].shape, sample[1].shape)

model = Sequential([
    layers.Dense(256, activation=tf.nn.relu),  # [b, 784] => [b, 256]
    layers.Dense(128, activation=tf.nn.relu),  # [b, 256] => [b, 128]
    layers.Dense(64, activation=tf.nn.relu),  # [b, 128] => [b, 64]
    layers.Dense(32, activation=tf.nn.relu),  # [b, 64] => [b, 32]
    layers.Dense(10)  # [b, 32] => [b, 10], 330 = 32*10 + 10
])
model.build(input_shape=[None, 28 * 28])
model.summary()
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3)


def main():
    for epoch in range(30):
        for step, (x, y) in enumerate(db):
            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28 * 28])

            with tf.GradientTape() as tape:
                # [b, 784] => [b, 10]
                logits = model(x)
                y_onehot = tf.one_hot(y, depth=10)
                # [b]
                loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
                loss_ce = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss_ce = tf.reduce_mean(loss_ce)

            grads = tape.gradient(loss_ce, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            if step % 100 == 0:
                print(epoch, step, 'loss:', float(loss_ce), float(loss_mse))
        # test
        total_correct = 0
        total_num = 0
        for x, y in db_test:
            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28 * 28])
            # [b, 10]
            logits = model(x)
            # logits => prob, [b, 10]
            prob = tf.nn.softmax(logits, axis=1)
            # [b, 10] => [b], int64
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            # pred:[b]
            # y: [b]
            # correct: [b], True: equal, False: not equal
            correct = tf.equal(pred, y)
            correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))

            total_correct += int(correct)
            total_num += x.shape[0]

        acc = total_correct / total_num
        print(epoch, 'test acc:', acc)


if __name__ == '__main__':
    main()

Supongo que te gusta

Origin blog.csdn.net/qq_38574975/article/details/107420879
Recomendado
Clasificación