Android Handler 源码解析

概述

Handler主要用于线程间的通信,Handler主要是由MessageQueueMessageLooperHandler,共同组成,称为Handler消息机制,存储Looper使用了ThreadLocal,下面我们一次讲解这几个类

  • Handler主要负责发送消息,和处理消息
  • MessageQueue主要负责储存消息
  • Looper主要负责从MessageQueue中取出消息,然后分发给Handler
  • ThreadLocal主要负责存储不同线程的Looper对象
  • Message主要负责存储数据

ThreadLocal

ThreadLocal是一个线程内部的数据储存类,通过他可以在指定线程中储存数据,数据存储后,只有指定线程才可以可以获取储存数据,对于其他线程来说,则无法获取到数据;一般来说当某些数据是以线程为作用域,且不同线程有不同副本的时候,就可以考虑采用ThreadLocal,比如对于Handler来说,他们需要获取不同线程的Lopper,这个时候就需要通过ThreadLocal可以轻松在不同线程存储Looper

ThreadLocal另一个使用场景是复杂逻辑的对象传递,比如监听器传递,有时候一个线程的任务过于复杂,这可能表现为函数作用栈比较深,以及代码入口的多样性,在这种情况下,我们需要监听器贯穿整个线程,这个时候就可以采用ThreadLocal,让监听器作为线程的全局对象而存在,线程内只要get就可以获取监听器

ThreadLocal的使用

    mThreadLocal = new ThreadLocal<>();
        mThreadLocal.set(true);
        Log.d("mmm","当前线程"+Thread.currentThread()+"ThreadLocal存储"+ mThreadLocal.get());
        new Thread("thread1"){
            @Override
            public void run() {
                super.run();
                mThreadLocal.set(false);
                Log.d("mmm","当前线程"+Thread.currentThread()+"ThreadLocal存储"+ mThreadLocal.get());
            }
        }.start();
        new Thread("thread2"){
            @Override
            public void run() {
                super.run();
                Log.d("mmm","当前线程"+Thread.currentThread()+"ThreadLocal存储"+ mThreadLocal.get());
            }
        }.start();

我在主线程设置了truethread1设置了falsethread2 没有设置,按照正常来说获取,主线程 为true ,thread1是false, thraed2为null,看一下log

09-28 11:30:12.616 32536-32536/com.example.jh.rxhapp D/mmm: 当前线程Thread[main,5,main]ThreadLocal存储true
09-28 11:30:12.618 32536-32745/com.example.jh.rxhapp D/mmm: 当前线程Thread[thread2,5,main]ThreadLocal存储null
09-28 11:30:12.619 32536-32744/com.example.jh.rxhapp D/mmm: 当前线程Thread[thread1,5,main]ThreadLocal存储false

ThreadLocal源码

 public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

set方法就是通过当前线程获取一个ThreadLocalMap ,然后通过ThreadLocalMap 去储存数据,如果ThreadLocalMapnull那么久同过当前thread去创建一个ThreadLocalMap ,再去存储,下面我们看一下ThreadLocalMap 是如何创建的

   void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }
    
    
    class Thread implements Runnable {
   ...
    ThreadLocal.ThreadLocalMap threadLocals = null;
    }

每一个Thread内部都有一个ThreadLocalMap对象,如果这个对象为null,就为他重新赋值,然后我们看他是如何set数据的

  private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

首先用key计算出数组下标,然后从Entry[]中取出值,如果有数据则重新赋值,如果没有数据,则创建一个新的Entry添加到Entry[]数组中

下面我们看一下get方法

   public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
    
  ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }
    
    
    private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }
    
    

首先获取此线程的ThreadLocalMap,如果不为Null,就用key计算出Entry[]数组下标,然后取出Entry,然后再取出具体的值,如果ThreadLocalMap为Null或者取出的Entry为Null,就重新赋值

  private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

ThreadLocal总结

每一个线程中都会有一个 ThreadLocal.ThreadLocalMap threadLocals = null;成员变量,我们操作ThreadLocal的set个get方法时,都是操作的单个线程中ThreadLocalMap对象,而ThreadLocalMap中是以Entry[]数组来储存数据,所以就实现了每个线程都会有不同的值

Lopper

创建Lopper

 public static void prepare() {
        prepare(true);
    }
    
 private static void prepare(boolean quitAllowed) {
        //一个线程只允许创建一个looper
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    
    
  private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

利用静态prepare方法,来创建Looper,对于无参的情况,默认调用 prepare(true),表示Looper允许退出,false表示不允许退出,一个线程只允许创建一个LooperLooper储存在ThreadLocal中,这样就实现了一个线程一个Looper,创建Looper的时候还创建一个MessageQueue

prepareMainLooper

该方法主要在ActiityThread只使用,创建主线程的Looper

   public static void prepareMainLooper() {
        //该Looper不允许退出
        prepare(false);
        synchronized (Looper.class) {
            //把该Looper设置为主线程Looper,只能设置一次
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }
    
 //获取主线程的Looper    
 public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

loop()

    public static void loop() {
        //获取本线程的looper
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        //获取MessageQueue
        final MessageQueue queue = me.mQueue;
        ...

        for (;;) {
            //从MessageQueue中取出消息,没有消息就会阻塞
            Message msg = queue.next(); // might block
            if (msg == null) {
                // 一般情况msg不会为null,只有messageQueue退出,msg才会返回null
                return;
            }
            ...
                //msg.target其实就是Handler对象,把消息分发给Handler
                msg.target.dispatchMessage(msg);
                ...
                //把Message放入消息池
                msg.recycleUnchecked();

        }
    }

loop()方法进入无限循环,不断重复以下操作

  • MessageQueue中取出Message
  • Message分发给对应的Handler
  • 把分发后的Message回收到消息池,以便重新利用

quit()

  public void quit() {
        //移除消息
        mQueue.quit(false);
    }

  public void quitSafely() {
        //安全的移除消息
        mQueue.quit(true);
    }

Looper.quit(),最终调用的是MessageQueuequit方法,这俩个方法区别就是,一个quit方法会,直接退出,quitSafely会执行完剩余的消息退出

Looper总结

Looper的主要工作是,从MessageQueue中获取消息,然后分发给对应的Handler,除了主线程,其他线程都需要自己去调用Looper.prepare()方法创建Looper,因为主线程的LooperActivityThreadmain方法里面创建了,创建完成之后在调用Looper.loop方法进行循环,下面是一个创建Looper的经典例子

 class LooperThread extends Thread {
        public Handler mHandler;
  
        public void run() {
            Looper.prepare();
  
            mHandler = new Handler() {
                public void handleMessage(Message msg) {
                    // process incoming messages here
                }
            };
  
            Looper.loop();
        }
    }

Handler

构造方法

  public Handler() {
        this(null, false);
    }
    
  public Handler(Callback callback) {
        this(callback, false);
    }
    
 public Handler(boolean async) {
        this(null, async);
    }
    
  public Handler(Callback callback, boolean async) {
    ...
        //获取此线程中的looper
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        //获取looper中的MessageQueue
        mQueue = mLooper.mQueue;
        //是否设置了Callback
        mCallback = callback;
        //是否为异步
        mAsynchronous = async;
    }

这个几个构造方法,最终都调用了俩个参数的构造方法,对于无参的构造方法,默认使用本当前线程中的loopercallbacknull,消息为同步处理的方式

  public Handler(Looper looper) {
        this(looper, null, false);
    }

  public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }

  public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

Looper为参数的构造方法,可以指定Looper

发送消息

这是发送消息的调用链,我们发现最终都是调用了MessageQueue.enqueueMessage()

send

  public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }

  public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }

  public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    
  public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

  private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        //在这里为msg.target赋值
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

post

 public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

 private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

Handler.sendEmptyMessage()系列方法,最终调用了MessageQueue.enqueueMessage(msg, uptimeMillis),将消息添加到消息队列中,其中uptimeMillis是系统时间加上延迟时间

分发消息

在Looper.loop()方法中,发现有消息,会调用msg.target.dispatchMessage方法,来分发消息

   public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    
private static void handleCallback(Message message) {
        message.callback.run();
    }

分发流程

  • msg中有callback时,则调用message.callback.run();方法,其中的callback指的Runnable
  • 如果callback为空,那么则看一下成员变量的mCallback是否为空,这个是Handler的构造方法传入的
  • 如果mCallback也为空,则调用handleMessage方法,这个一般在Handler的子类中重写

其他方法

removeMessages

移除消息,其实还是操作的MessageQueue,下面再一起分析

  public final void removeMessages(int what, Object object) {
        mQueue.removeMessages(this, what, object);
    }

Handler总结

Handler主要工作就是,发送消息,最终是把消息插入到了MessageQueue中,然后通过Looper.loop方法,循环从MessageQueue拿出消息,然后通过Handler把消息分发出去,这就完成了一次循环

MessageQueue

MessageQueue是java层和c++层链接的纽带,大部分的核心方法都是交给native层去做,MessageQueue中的native方法如下

    private native static long nativeInit();
    private native static void nativeDestroy(long ptr);
    private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
    private native static void nativeWake(long ptr);
    private native static boolean nativeIsPolling(long ptr);
    private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);

想要详细了解这些native方法做了什么情移步到gityuan大神的博客 Android消息机制2-Handler(Native层)

创建MessageQueue

    MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        //通过native代码初始化消息队列
        mPtr = nativeInit();
    }

enqueueMessage 插入消息

   boolean enqueueMessage(Message msg, long when) {
        //msg.target不能为空
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            ...
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // 如果p==null表示消息队列为空,或者msg消息触发时间为队列最早,则把消息插入头部,如果阻塞唤醒队列
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                //按照时间顺序插入到队列中,不需要唤醒队列
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

MessageQueue的插入,其实就是链表的插入,是按照Message的触发时间先后顺序排列的,消息头是最早触发的,当有消息假如队列时,会从头开始遍历,直到找到消息应该插入的合适位置,以保证所有消息的时间顺序

next 获取消息

  Message next() {
        final long ptr = mPtr;
        //如果消息循环已经退出就直接返回null
        if (ptr == 0) {
            return null;
        }
        // 注意这里首次循环为-1 
        int pendingIdleHandlerCount = -1; 
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            //阻塞操作,等待nextPollTimeoutMillis时长,或者被唤醒都会返回
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                ...
                if (msg != null) {
                    if (now < msg.when) {
                       //当前时间小于下个消息测触发时间,就重新设置阻塞的时间
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        //如果消息队列不为空,并且当前时间大于等于消息的触发时间,直接把消息返回,然后从消息队列移除此消息
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    //没有消息则把nextPollTimeoutMillis设置为-1
                    nextPollTimeoutMillis = -1;
                }

                // 如果消息正在推出则返回null
                if (mQuitting) {
                    dispose();
                    return null;
                }

                //这里是idlehandler,注意这里pendingIdleHandlerCount < 0才会进入,而等于0不会进入,什么时候小于0呢,其实就是第一次进入循环,赋值为-1
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                //注意这里pendingIdleHandlerCount <= 0,小于等于0就直接continue,不会走下面的代码
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            //上方是源码注释,意思是,运行IdleHandler,但是只会在第一次迭代运行
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            //上边是源码的注释,意思就是把它重新赋值为0,也就意味着IdleHandler只执行一次
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
  • 首先进入先判断是否已经退出,退出直接返回,不退出进行下一步

  • 之后再判断当前的MessageQueue是否为空,为空则赋值阻塞时间 nextPollTimeoutMillis = -1;

  • 如果不为空,则判断当前时间是否大于等于消息的触发时间,如果小于触发时间,则赋值阻塞时间 nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);

  • 如果当前时间大于等于触发时间,则直接取出消息返回,并且把此消息移除队列

  • 其中涉及一个方法 nativePollOnce(ptr, nextPollTimeoutMillis);这是一个native方法,主要作用是阻塞,nextPollTimeoutMillis代表阻塞时间

    • 其中nextPollTimeoutMillis=-1表示,一直阻塞,直到被唤醒
    • 其中nextPollTimeoutMillis=0表示,不阻塞,立即返回
    • 其中nextPollTimeoutMillis>0表示,阻塞nextPollTimeoutMillis毫秒,如果期间唤醒也会立即返回

IdleHandler

上方的源码继续向下分析就是IdleHandler,我之前写的一篇文章Android LeakCanary的使用和原理
,LeakCanary中使用了IdleHandler

 void waitForIdle(final Retryable retryable, final int failedAttempts) {
    // This needs to be called from the main thread.
    Looper.myQueue().addIdleHandler(new MessageQueue.IdleHandler() {
      @Override public boolean queueIdle() {
        postToBackgroundWithDelay(retryable, failedAttempts);
        return false;
      }
    });
  }

IdleHandler的作用是在当前线程消息队列空闲时,去做一些我们想要做的操作,但是IdleHandler只会执行一次,上面注释已经描述的很清楚了

Message

Message主要包括以下信息

数据类型 成员变量 解释
int what 消息类别
long when 消息触发时间
int arg1 参数1
int arg2 参数2
Object obj 消息内容
Handler target 消息响应方
Runnable callback 回调方法

消息池

Message维护了一个消息池,recycle()方法可以把用过的消息假如到消息池中,这样做的好处是,当消息池不为空时,可以直接从中取出Message使用,而不是重新创建,提高效率

静态变量sPool的数据类型是Message,其实是一个链表,维护这个消息池,MAX_POOL_SIZE代表容量,默认50

recycle()

    public void recycle() {
        if (isInUse()) {
            if (gCheckRecycle) {
                throw new IllegalStateException("This message cannot be recycled because it "
                        + "is still in use.");
            }
            return;
        }
        recycleUnchecked();
    }
    
   void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }

其实就是一个链表的插入,把信息清除,然后插入

obtain() 从消息池中获取消息

 public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

如果sPool不为null,就从池子了取出一个Message,如果为null,就直接New一个返回

Android中为什么主线程不会因为Looper.loop()里的死循环卡死

要完全彻底理解这个问题,需要准备以下4方面的知识:Process/ThreadAndroid Binder IPCHandler/Looper/MessageQueue消息机制Linux pipe/epoll机制

给大家推荐一个靠谱答案,还是gityuan大神的回答Android中为什么主线程不会因为Looper.loop()里的死循环卡死?

总结

  • Handler通过sendMessage方法发送消息,插入到MessageQueue
  • Looper通过loop方法循环取出Message,然后分发给Handler
  • 然后通过dispatchMessage,交给相应的方法做处理

参考:http://gityuan.com/2015/12/26/handler-message-framework/

Android 开发艺术探索

发布了100 篇原创文章 · 获赞 5 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/qq_34760508/article/details/100929340