长短期记忆网络LSTM识别验证码

长短期记忆网络LSTM

关于LSTM的介绍和认识,可以参考这篇文章

长短期记忆网络LSTM:https://blog.csdn.net/eagleuniversityeye/article/details/91345671

说明:

entry _
…entry原图 ———————— reshape展开 —————— permute换轴 ———————— 输入LSTM

一、LSTM识别验证码——一个模型

使用LSTM结合Seq2Seq结构实现验证码识别
验证码样式如下图:
验证码
代码生成42000张验证码(train:40000, test:2000),验证码有清晰的,有低度模糊的,也有中度模糊的,位置也随机。
验证码和标签采用DataLoader加载,标签采用4*10的one-hot编码,网络输出每个图片也是4*10,训练20轮即达到了正确率100%,效果不错。
在这里插入图片描述
下面是模型部分代码,其他部分的代码就不贴了,损失函数MSELoss,优化器Adam。

import torch
from torch import nn


class Lstm(nn.Module):
	def __init__(self):
		super().__init__()
		self.fc1 = nn.Sequential(
			nn.Linear(180, 128),
			nn.BatchNorm1d(128),
			nn.LeakyReLU(),
		)
		self.lstm1 = nn.LSTM(128, 256, 2, batch_first=True)
		self.lstm2 = nn.LSTM(256, 128, 2, batch_first=True)
		self.fc2 = nn.Sequential(
			nn.Linear(128, 10),
		)

	def forward(self, entry):							# N C H W		N * 3 * 60 * 120
		entry = entry.reshape(-1, 3*60, 120)			# N V S			N * 180 * 120
		entry = entry.permute(0, 2, 1)					# N S V			N * 120 * 180
		entry = entry.reshape(-1, 180)					# N V			120N * 180
		fc1_out = self.fc1(entry)						# N V			120N * 128
		fc1_out = fc1_out.reshape(-1, 120, 128)			# N S V			N * 120 * 128
		lstm1_out, _ = self.lstm1(fc1_out)				# N S V			N * 120 * 256网络会输出S次
		lstm1_out = lstm1_out[:, -1, :]					# N V 			N * 256只保留最后一次输出
		lstm1_out = lstm1_out.reshape(-1, 1, 256)		# N 1 V			N * 1 * 256
		# 下行代码:N 4 V		广播为N * 4 * 256,后面对每个256提取特征输出做损失,后面的优化使得每个V保留一个字符的特征
		lstm1_out = lstm1_out.expand(lstm1_out.shape[0], 4, 256)
		lstm2_out, _ = self.lstm2(lstm1_out)			# N 4 V			N * 4 * 128
		lstm2_out = lstm2_out.reshape(-1, 128)			# 4N, V			4N * 128
		fc2_out = self.fc2(lstm2_out)					# 4N, V			4N * 10
		fc2_out = fc2_out.reshape(-1, 4, 10)			# N S V			N * 4 * 10

		return fc2_out

二、编码器和解码器分离

import torch
from torch import nn


class Encoder(nn.Module):
	def __init__(self):
		super().__init__()
		self.fc = nn.Sequential(
			nn.Linear(180, 128),
			nn.BatchNorm1d(128),
			nn.LeakyReLU(),
		)
		self.lstm = nn.LSTM(128, 256, 2, batch_first=True)			# V h num_layer

	def forward(self, x):							# N C H W		N 3 60 120
		x = x.reshape(-1, 180, 120)					# N V S			N 180 120
		x = x.permute(0, 2, 1)						# N S V			N 120 180
		x = x.reshape(-1, 180)						# N V			120N 180
		fc_out = self.fc(x)							# N V			120N 128
		fc_out = fc_out.reshape(-1, 120, 128)		# N S V			N 120 128
		lstm_out, _ = self.lstm(fc_out)				# N S V			N 120 256
		lstm_out = lstm_out[:, -1, :]				# N V			N 256
		lstm_out = lstm_out.reshape(-1, 1, 256)		# N 1 V			N 1 256
		lstm_out = lstm_out.expand(lstm_out.shape[0], 4, 256)		# N 4 256
		return lstm_out


class Decoder(nn.Module):
	def __init__(self):
		super().__init__()
		self.lstm = nn.LSTM(256, 128, 2, batch_first=True)
		self.fc = nn.Sequential(
			nn.Linear(128, 10),
		)

	def forward(self, x):
		lstm_out, _ = self.lstm(x)						# N S V			N 4 128
		lstm_out = lstm_out.reshape(-1, 128)			# N V			4N 128
		fc_out = self.fc(lstm_out)						# N V			4N 10
		fc_out = fc_out.reshape(-1, 4, 10)				# N S V			N 4 10
		return fc_out


class Net(nn.Module):
	def __init__(self):
		super().__init__()
		self.encoder = Encoder()
		self.decoder = Decoder()

	def forward(self, x):
		encoder = self.encoder(x)
		decoder = self.decoder(encoder)

		return decoder


# 直接实例化Net()即可,优化也是直接优化Net()的权重即可
# self.net = Net().to(self.device)
# self.opt = torch.optim.Adam(self.net.parameters())

可以修改LSTM参数以改变模型识别率,代价是计算量的增减。

print('The End !')
发布了8 篇原创文章 · 获赞 2 · 访问量 1867

猜你喜欢

转载自blog.csdn.net/leiduifan6944/article/details/103744501