2020/03/05 生成模型&生成学习(Generative Learning)的流程

在之前的学习2020/01/02 深度学习数学基础学习——朴素贝叶斯中,大概的了解了生成学习的原理,但是对算法实现的__完整流程__不够清晰,所以今天想通过对生成学习回顾,明确一下生成学习的流程框架。

学习资料:斯坦福CS229-note2-Generative Learning algorithms的1.2节

必要的概念

类别先验概率\(P(c)\)

类条件概率\(P(\vec x | c)\) ,其中\(\vec x=(x_{1},x_{2},...,x_{m}); m为属性\)\(\vec x\)可以想象成特征向量
举例: 当类别\(c\)是西瓜时,1号属性值\(x_{1}\)为4的概率。

类别后验概率\(P(c|\vec x) \Leftrightarrow P(f_{\vec \theta}(\vec x)|\vec x) \Leftrightarrow P(\vec \theta|\vec x)\)(就是机器学习器)
举例: 当1号属性值\(x_{1}\)为4时,类别\(c\)是西瓜的概率。

步骤提炼

  1. 我们有一个数据集,它的样本是\((\vec x_{1}, \vec x_{2},...\vec x_{i}, ..., \vec x_{n})\), 这些样本对应的标签是\((y_{1}, y_{2}, ...,y_{i}, ..., y_{n})\)。我们可以认为这个数据集是从这样一个分布 \((随机向量 \vec X, 随机变量Y)\) 中采样得到的,当然这个分布我们并不知道是什么,生成学习的目的 就是要 通过 有限的数据集(观测样本) 去估计这个分布 \((随机向量 \vec X, 随机变量Y)\) ,从而做出后续的决策
  2. 至于为什么是联合分布 \((随机向量 \vec X, 随机变量Y)\) 而不是后验分布 \((随机变量Y | 随机向量 \vec X)\) ,这是由贝叶斯规则简化得到的: \(\begin{aligned} \arg \max _{y} p(y | x) &=\arg \max _{y} \frac{p(x | y) p(y)}{p(x)} =\arg \max_{y} p(x | y) p(y) = \arg \max_{y} p(x, y) \end{aligned}\)
  3. 为了估计这个分布 \(P(随机向量 \vec X, 随机变量Y) == P(随机向量 \vec X | 随机变量Y)P(随机变量Y)\) ,我们需要了解\(P(随机向量 \vec X | 随机变量Y)\)\(P(随机变量Y)\) 都是什么。 \(P(随机变量Y)\) 是类别先验概率,它可以通过统计样本中类别出现频次统计得到。 \(P(随机向量 \vec X | 随机变量Y)\) 是类别条件概率,由于我们事先并不知道它的分布,因此这里是我们的预测的关键!,那我们如何对它建模呢?最简单的方法就是假设!最为一般的我们假设它服从 多元(维)高斯分布-CS229-note2-1.1节

猜你喜欢

转载自www.cnblogs.com/Research-XiaoEMo/p/12419416.html