梯度消失和梯度爆炸及其解决方案

1.梯度消失

根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都小于1的话,那么即使这个结果是0.99,在经过足够多层传播之后,误差对输入层的偏导会趋于0。这种情况会导致靠近输入层的隐含层神经元调整极小。

2.梯度膨胀

根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都大于1的话,在经过足够多层传播之后,误差对输入层的偏导会趋于无穷大。这种情况又会导致靠近输入层的隐含层神经元调整变动极大。

3. 梯度消失和梯度膨胀的解决方案:

3.1 预训练加微调
此方法来自Hinton在2006年发表的一篇论文,Hinton为了解决梯度的问题,提出采取无监督逐层训练方法,其基本思想是每次训练一层隐节点,训练时将上一层隐节点的输出作为输入,而本层隐节点的输出作为下一层隐节点的输入,此过程就是逐层“预训练”(pre-training);在预训练完成后,再对整个网络进行“微调”(fine-tunning)。
Hinton在训练深度信念网络(Deep Belief Networks)中,使用了这个方法,在各层预训练完成后,再利用BP算法对整个网络进行训练。此思想相当于是先寻找局部最优,然后整合起来寻找全局最优,此方法有一定的好处,但是目前应用的不是很多了
3.2 梯度剪切、正则
梯度剪切这个方案主要是针对梯度爆炸提出的,其思想是设置一个梯度剪切阈值,然后更新梯度的时候,如果梯度超过这个阈值,那么就将其强制限制在这个范围之内,通过这种直接的方法就可以防止梯度爆炸。
另外一种解决梯度爆炸的手段是采用权重正则化(weithts regularization)比较常见的是l1正则,和l2正则,在各个深度框架中都有相应的API可以使用正则化,比如在tensorflow中,搭建网络的时候已经设置了正则化参数,则调用以下代码可以直接计算出正则损失:

regularization_loss = tf.add_n(tf.losses.get_regularization_losses(scope='my_resnet_50'))

如果没有设置初始化参数,也可以使用以下代码计算l2 正则损失:

l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables() if 'weights' in var.name])

正则化是通过对网络权重做正则限制过拟合,仔细看正则项在损失函数的形式:

其中,α 是指正则项系数,因此,如果发生梯度爆炸,权值的范数就会变的非常大,通过正则化项,可以部分限制梯度爆炸的发生。注:事实上,在深度神经网络中,往往是梯度消失出现的更多一些。
3.3 relu、leakrelu、relu等激活函数
Relu:思想也很简单,如果激活函数的导数为1,那么就不存在梯度消失爆炸的问题了,每层的网络都可以得到相同的更新速度,relu就这样应运而生。
Relu的主要贡献在于:解决了梯度消失、爆炸的问题。计算方便,计算速度快。加速了网络的训练。同时也存在一些缺点:由于负数部分恒为0,会导致一些神经元无法激活(可通过设置小学习率部分解决)输出不是以0为中心的。
leakrelu就是为了解决relu的0区间带来的影响,其数学表达为:leakrelu=max(k∗x,x)
其中k是leak系数,一般选择0.01或者0.02,或者通过学习而来。leakrelu解决了0区间带来的影响,而且包含了relu的所有优点。
3.4 batchnorm
Batchnorm是深度学习发展以来提出的最重要的成果之一了,目前已经被广泛的应用到了各大网络中,具有加速网络收敛速度,提升训练稳定性的效果,Batchnorm本质上是解决反向传播过程中的梯度问题。
batchnorm全名是batch normalization,简称BN,通过规范化操作将输出x规范化以此来保证网络的稳定性。batchnorm就是通过对每一层的输出规范为均值和方差一致的方法,消除了w带来的放大缩小的影响,进而解决梯度消失和爆炸的问题。
3.5 残差结构
事实上,就是残差网络的出现导致了image net比赛的终结,自从残差提出后,几乎所有的深度网络都离不开残差的身影,相比较之前的几层,几十层的深度网络,在残差网络面前都不值一提,残差可以很轻松的构建几百层,一千多层的网络而不用担心梯度消失过快的问题,原因就在于残差的捷径(shortcut)部分。残差结构说起残差的话,不得不提这篇论文了:
Deep Residual Learning for Image Recognition
3.6 LSTM
LSTM全称是长短期记忆网络(long-short term memory networks),是不那么容易发生梯度消失的,主要原因在于LSTM内部复杂的“门”(gates),LSTM通过它内部的“门”可以接下来更新的时候“记住”前几次训练的”残留记忆“,因此,经常用于生成文本中。

发布了9 篇原创文章 · 获赞 0 · 访问量 73

猜你喜欢

转载自blog.csdn.net/GFDGFHSDS/article/details/104596371