JVM编译优化技术(资料整理)

参考:《深入理解JVM虚拟机(周志明)》

1.公共表达式消除

         公共子表达式消除是一个普遍应用于各种编译器的经典优化技术,它的含义是:如果一个表达式E已经计算过了,并且从先前的计算到现在E中所有变量的值都没有发生变化,那么E的这次出现就成为了公共子表达式

         对于这种表达式,没有必要花时间再对它进行计算,只需要直接用前面计算过的表达式结果代替E就可以了。如果这种优化仅限于程序的基本块内,便称为局部公共子表达式消除(Local Common Subexpression Elimination),如果这种优化的范围涵盖了多个基本块,那就称为全局公共子表达式除(Global CommonSubexpression Elimination)

简单理解就是比如代码里面有一个表达式中含有相同的部分,则通过合并这部分的表达式,达到优化的效果
比如:
int d=(c * b)*12+a+(a+b * c)
可以优化为:
int d=E*12+a+(a+E)
E可以作为公共的子表达式存在,只需要计算一次.

2.数组边界检查消除

         数组边界检查消除(Array Bounds Checking Elimination)是即时编译器中的一项语言相关的经典优化技术。

         如果有一个数组foo[],在Java语言中访问数组元素foo[i]的时候系统将会自动进行上下界的范围检查,即检查i必须满足i>=0&&i<foo.length这个条件,否则将抛出一个运行时异常:java.lang.ArrayIndexOutOfBoundsException。这对软件开发者来说是一件很好的事情,即使程序员没有专门编写防御代码,也可以避免大部分的溢出攻击。但是对于虚拟机的执行子系统来说,每次数组元素的读写都带有一次隐含的条件判定操作,对于拥有大量数组访问的程序代码,这无疑也是一种性能负担。

3.隐式异常处理

         这些安全检查也导致了相同的程序,Java要比C/C++做更多的事情(各种检查判断),这些事情就成为一种隐式开销,如果处理不好它们,就很可能成为一个Java语言比C/C++更慢的因素。

         要消除这些隐式开销,除了如数组边界检查优化这种尽可能把运行期检查提到编译期完成的思路之外,另外还有一种避免思路——隐式异常处理,Java中空指针检查和算术运算中除数为零的检查都采用了这种思路。

比如说:

	if(foo!=null){
		return foo.value;
	}
	else{
		throw new NullPointException();
	}

优化之后:

	try{
		return foo.value;
	}
	catch(segment_fault){
		uncommon_trap();
	}

         虚拟机会注册一个Segment Fault信号的异常处理器(伪代码中的uncommon_trap()),这样当foo不为空的时候,对value的访问是不会额外消耗一次对foo判空的开销的。

         代价就是当foo真的为空时,必须转入到异常处理器中恢复并抛出NullPointException异常,这个过程必须从用户态转到内核态中处理,结束后再回到用户态,速度远比一次判空检查慢。当foo极少为空的时候,隐式异常优化是值得的,但假如foo经常为空的话,这样的优化反而会让程序更慢,还好HotSpot虚拟机足够“聪明”,它会根据运行期收集到的Profile信息自动选择最优方案。

3.方法内联

         方法内联的优化行为看起来很简单,不过是把目标方法的代码“复制”到发起调用的方法之中,避免发生真实的方法调用而已。但实际上Java虚拟机中的内联过程远远没有那么简单,因为如果不是即时编译器做了一些特别的努力,按照经典编译原理的优化理论,大多数的Java方法都无法进行内联。

         对于一个虚方法,编译期做内联的时候根本无法确定应该使用哪个方法版本。假如有ParentB和SubB两个具有继承关系的类,并且子类重写了父类的get()方法,那么,是要执行父类的get()方法还是子类的get()方法,需要在运行期才能确定,编译期无法得出结论。

         为了解决虚方法的内联问题,Java虚拟机设计团队想了很多办法,首先是引入了一种名为“类型继承关系分析”(Class Hierarchy Analysis,CHA)的技术,这是一种基于整个应用程序的类型分析技术,它用于确定在目前已加载的类中,某个接口是否有多于一种的实现,某个类是否存在子类、子类是否为抽象类等信息。

         如果向CHA查询出来的结果是有多个版本的目标方法可供选择,则编译器还将会进行最后一次努力,使用内联缓存Inline Cache)来完成方法内联,这是一个建立在目标方法正常入口之前的缓存

         它的工作原理大致是:在未发生方法调用之前,内联缓存状态为空,当第一次调用发生后,缓存记录下方法接收者的版本信息,并且每次进行方法调用时都比较接收者版本,如果以后进来的每次调用的方法接收者版本都是一样的,那这个内联还可以一直用下去。如果发生了方法接收者不一致的情况,就说明程序真正使用了虚方法的多态特性,这时才会取消内联,查找虚方法表进行方法分派。

4.逃逸分析

         它与类型继承关系分析一样,并不是直接优化代码的手段,而是为其他优化手段提供依据的分析技术。逃逸分析的基本行为就是分析对象动态作用域

  • 方法逃逸
    当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他方法中。
  • 线程逃逸
    甚至还有可能被外部线程访问到,譬如赋值给类变量或可以在其他线程中访问的实例变量。

开启逃逸分析: -XX:+DoEscapeAnalysis
查看分析结果: -XX:+PrintEscapeAnalysis来查看分析结果
开启标量替换:-XX:+EliminateAllocations
开启同步消除:+XX:+EliminateLocks
查看标量的替换情况:-XX:+PrintEliminateAllocations

1.栈上分配

         Java虚拟机中,在Java堆上分配创建对象的内存空间几乎是Java程序员都清楚的常识了,Java堆中的对象对于各个线程都是共享和可见的,只要持有这个对象的引用,就可以访问堆中存储的对象数据。虚拟机的垃圾收集系统可以回收堆中不再使用的对象,但回收动作无论是筛选可回收对象,还是回收和整理内存都需要耗费时间。

         如果确定一个对象不会逃逸出方法之外,那让这个对象在栈上分配内存将会是一个很不错的主意,对象所占用的内存空间就可以随栈帧出栈而销毁。在一般应用中,不会逃逸的局部对象所占的比例很大,如果能使用栈上分配,那大量的对象就会随着方法的结束而自动销毁了,垃圾收集系统的压力将会小很多。

2.同步消除

         线程同步本身是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃逸出线程,无法被其他线程访问,那这个变量的读写肯定就不会有竞争,对这个变量实施的同步措施也就可以消除掉。

3.标量替换

         标量(Scalar)是指一个数据已经无法再分解成更小的数据来表示了,Java虚拟机中的原始数据类型(int、long等数值类型以及reference类型等)都不能再进一步分解,它们就可以称为标量。相对的,如果一个数据可以继续分解,那它就称作聚合量(Aggregate)Java中的对象就是最典型的聚合量

         如果把一个Java对象拆散,根据程序访问的情况,将其使用到的成员变量恢复原始类型来访问就叫做标量替换。

         如果逃逸分析证明一个对象不会被外部访问,并且这个对象可以被拆散的话,那程序真正执行的时候将可能不创建这个对象,而改为直接创建它的若干个被这个方法使用到的成员变量来代替。将对象拆分后,除了可以让对象的成员变量在栈上(栈上存储的数据,有很大的概率会被虚拟机分配至物理机器的高速寄存器中存储)分配和读写之外,还可以为后续进一步的优化手段创建条件。

总结:

         如果要完全准确地判断一个对象是否会逃逸,需要进行数据流敏感的一系列复杂分析,从而确定程序各个分支执行时对此对象的影响。这是一个相对高耗时的过程,如果分析完后发现没有几个不逃逸的对象,那这些运行期耗用的时间就白白浪费了,所以目前虚拟机只能采用不那么准确,但时间压力相对较小的算法来完成逃逸分析。还有一点是,基于逃逸分析的一些优化手段,如上面提到的“栈上分配”,由于HotSpot虚拟机目前的实现方式导致栈上分配实现起来比较复杂,因此在HotSpot中暂时还没有做这项
优化。

5.优化举例

原始代码

	static class B{
		int value;
		final int get(){
			return value;
		}
	}
	
	public void foo(){
		y=b.get();
		//……do stuff……
		z=b.get();
		sum=y+z;
	}

         方法内联的重要性要高于其他优化措施,它的主要目的有两个:

  • 去除方法调用的成本(如建立栈帧等)
  • 二是为其他优化建立良好的基础,方法内联膨胀之后可以便于在更大范围上采取后续的优化手段,从而获取更好的优化效果。

方法内联后:

	public void foo(){
		y=b.value;
		//……do stuff……
		z=b.value;
		sum=y+z;
	}

         假设代码中间注释掉的“dostuff……”所代表的操作不会改变b.value的值,那就可以把“z=b.value”替换为“z=y”,因为上一句“y=b.value”已经保证了变量y与b.value是一致的,这样就可以不再去访问对象b的局部变量了。进行冗余访问清除

冗余访问消除后:

	public void foo(){
		y=b.value;
		//……do stuff……
		z=y;
		sum=y+z;
	}

         因为在这段程序的逻辑中并没有必要使用一个额外的变量“z”,它与变量“y”是完全相等的,因此可以使用“y”来代替“z”。

复写传播后:

	public void foo(){
		y=b.value;
		//……do stuff……
		y=y;
		sum=y+y;
	}

         无用代码可能是永远不会被执行的代码,也可能是完全没有意义的代码,因此,它又形象地称为“Dead Code”,在代码清单11-9中,“y=y”是没有意义的。

无用代码消除后:

	public void foo(){
		y=b.value;
		//……do stuff……
		sum=y+y;
	}
发布了82 篇原创文章 · 获赞 15 · 访问量 3120

猜你喜欢

转载自blog.csdn.net/qq_34326321/article/details/103542939