学习和计算时特别常用的三角公式

前言

无论搞硬件还是搞软件,数学基础,都很重要,没有一定的数学基础,不管学的语言再多、会的芯片型号再多,也只能算皮毛;做算法的需要数学理论作为支撑,做芯片设计的也需要数理知识作为支撑,总之,对于我们理工科的人,核心的东西还是数学基础,比如三角函数的计算和变换在信号处理中就会经常碰到,有句话常说“代数烦、几何难,三角公式记不完”,三角公式再多,其本质还是通过最基本的公式推导出来的,这里给出常用的三角公式,希望可以帮到大家。

角度与弧度换算

360 ° = 2 π    rad 360°=2\pi \;\text{rad}

180 ° = π    rad 180°=\pi \;\text{rad}

1 ° = π 180    rad 0.01745    rad 1°=\frac{\pi}{180}\;\text{rad}\approx 0.01745\;\text{rad}

1    rad = 180 ° π 57.30 ° 1\;\text{rad}=\frac{180°}{\pi}\approx 57.30°

定义式

img

正弦: sin α = a c \text{正弦:}\sin \alpha =\frac{a}{c}

余弦: cos α = b c \text{余弦:}\cos \alpha =\frac{b}{c}

正切: tan α = a b \text{正切:}\tan \alpha =\frac{a}{b}

余切: cot α = b a \text{余切:}\cot \alpha =\frac{b}{a}

正割: sec α = c b \text{正割:}\sec \alpha =\frac{c}{b}

余割: csc α = c a \text{余割:}\csc \alpha =\frac{c}{a}

倒数关系:——————— \text{倒数关系:———————}

cot α = 1 tan α \cot \alpha =\frac{1}{\tan \alpha}

sec α = 1 cos α \sec \alpha =\frac{1}{\cos \alpha}

csc α = 1 sin α \csc \alpha =\frac{1}{\sin \alpha}

正弦定理

img
sin A a = sin B b = sin C c = 1 2 R \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R}

余弦定理

img
a 2 = b 2 + c 2 2 b c cos A a^2=b^2+c^2-2bc\cos A

诱导公式(七组)

  • 奇变偶不变,符号看象限

sin ( 2 k π + α ) = sin α k Z cos ( 2 k π + α ) = cos α k Z tan ( 2 k π + α ) = tan α k Z cot ( 2 k π + α ) = cot α k Z sec ( 2 k π + α ) = sec α k Z csc ( 2 k π + α ) = csc α k Z \underline{\begin{matrix} \sin \left( 2k\pi +\alpha \right) &=\sin \alpha& k\in \mathbb{Z}\\ \cos \left( 2k\pi +\alpha \right) &=\cos \alpha& k\in \mathbb{Z}\\ \tan \left( 2k\pi +\alpha \right) &=\tan \alpha& k\in \mathbb{Z}\\ \cot \left( 2k\pi +\alpha \right) &=\cot \alpha& k\in \mathbb{Z}\\ \sec \left( 2k\pi +\alpha \right) &=\sec \alpha& k\in \mathbb{Z}\\ \csc \left( 2k\pi +\alpha \right) &=\csc \alpha& k\in \mathbb{Z}\\ \end{matrix}}

sin ( π + α ) = sin α cos ( π + α ) = cos α tan ( π + α ) = tan α cot ( π + α ) = cot α sec ( π + α ) = sec α csc ( π + α ) = csc α \underline{\begin{aligned} \sin \left( \pi +\alpha \right) &=-\sin \alpha\\ \cos \left( \pi +\alpha \right) &=-\cos \alpha\\ \tan \left( \pi +\alpha \right) &=\tan \alpha\\ \cot \left( \pi +\alpha \right) &=\cot \alpha\\ \sec \left( \pi +\alpha \right) &=-\sec \alpha\\ \csc \left( \pi +\alpha \right) &=-\csc \alpha\\ \end{aligned}}

sin ( α ) = sin α cos ( α ) = cos α tan ( α ) = tan α cot ( α ) = cot α sec ( α ) = sec α csc ( α ) = csc α \underline{\begin{aligned} \sin \left( -\alpha \right) &=-\sin \alpha\\ \cos \left( -\alpha \right) &=\cos \alpha\\ \tan \left( -\alpha \right) &=-\tan \alpha\\ \cot \left( -\alpha \right) &=-\cot \alpha\\ \sec \left( -\alpha \right) &=\sec \alpha\\ \csc \left( -\alpha \right) &=-\csc \alpha\\ \end{aligned}}

sin ( π α ) = sin α cos ( π α ) = cos α tan ( π α ) = tan α cot ( π α ) = cot α sec ( π α ) = sec α csc ( π α ) = csc α \underline{\begin{aligned} \sin \left( \pi -\alpha \right) &=\sin \alpha\\ \cos \left( \pi -\alpha \right) &=-\cos \alpha\\ \tan \left( \pi -\alpha \right) &=-\tan \alpha\\ \cot \left( \pi -\alpha \right) &=-\cot \alpha\\ \sec \left( \pi -\alpha \right) &=-\sec \alpha\\ \csc \left( \pi -\alpha \right) &=\csc \alpha\\ \end{aligned}}

sin ( 2 π α ) = sin α cos ( 2 π α ) = cos α tan ( 2 π α ) = tan α cot ( 2 π α ) = cot α sec ( 2 π α ) = sec α csc ( 2 π α ) = csc α \underline{\begin{aligned} \sin \left( 2\pi -\alpha \right) &=-\sin \alpha\\ \cos \left( 2\pi -\alpha \right) &=\cos \alpha\\ \tan \left( 2\pi -\alpha \right) &=-\tan \alpha\\ \cot \left( 2\pi -\alpha \right) &=-\cot \alpha\\ \sec \left( 2\pi -\alpha \right) &=\sec \alpha\\ \csc \left( 2\pi -\alpha \right) &=-\csc \alpha\\ \end{aligned}}

sin ( π 2 + α ) = cos α cos ( π 2 + α ) = sin α tan ( π 2 + α ) = cot α cot ( π 2 + α ) = tan α sec ( π 2 + α ) = csc α csc ( π 2 + α ) = sec α \underline{\begin{aligned} \sin \left( \frac{\pi}{2}+\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}+\alpha \right) &=-\sin \alpha\\ \tan \left( \frac{\pi}{2}+\alpha \right) &=-\cot \alpha\\ \cot \left( \frac{\pi}{2}+\alpha \right) &=-\tan \alpha\\ \sec \left( \frac{\pi}{2}+\alpha \right) &=-\csc \alpha\\ \csc \left( \frac{\pi}{2}+\alpha \right) &=\sec \alpha\\ \end{aligned}}

sin ( π 2 α ) = cos α cos ( π 2 α ) = sin α tan ( π 2 α ) = cot α cot ( π 2 α ) = tan α csc ( π 2 α ) = sec α sec ( π 2 α ) = csc α \underline{\begin{aligned} \sin \left( \frac{\pi}{2}-\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}-\alpha \right) &=\sin \alpha\\ \tan \left( \frac{\pi}{2}-\alpha \right) &=\cot \alpha\\ \cot \left( \frac{\pi}{2}-\alpha \right) &=\tan \alpha\\ \csc \left( \frac{\pi}{2}-\alpha \right) &=\sec \alpha\\ \sec \left( \frac{\pi}{2}-\alpha \right) &=\csc \alpha\\ \end{aligned}}

两角和公式(加法公式)[三组]

sin ( α + β ) = sin α cos β + cos α sin β \sin \left( \alpha +\beta \right) =\sin \alpha \cos \beta +\cos \alpha \sin \beta

sin ( α β ) = sin α cos β cos α sin β \sin \left( \alpha -\beta \right) =\sin \alpha \cos \beta -\cos \alpha \sin \beta

cos ( α + β ) = cos α cos β sin α sin β \cos \left( \alpha +\beta \right) =\cos \alpha \cos \beta -\sin \alpha \sin \beta

cos ( α β ) = cos α cos β + sin α sin β \cos \left( \alpha -\beta \right) =\cos \alpha \cos \beta +\sin \alpha \sin \beta

tan ( α + β ) = tan α + tan β 1 tan α tan β \tan \left( \alpha +\beta \right) =\frac{\tan \alpha +\tan \beta}{1-\tan \alpha \tan \beta}

tan ( α β ) = tan α tan β 1 + tan α tan β \tan \left( \alpha -\beta \right) =\frac{\tan \alpha -\tan \beta}{1+\tan \alpha \tan \beta}

倍角公式

sin 2 α = 2 sin α cos α \sin 2\alpha =2\sin \alpha \cos \alpha

cos 2 α = cos 2 α sin 2 α \cos 2\alpha =\cos ^2\alpha -\sin ^2\alpha

= 2 cos 2 α 1 =2\cos ^2\alpha -1

= 1 2 sin 2 α =1-2\sin ^2\alpha

tan 2 α = 2 tan α 1 tan 2 α \tan 2\alpha =\frac{2\tan \alpha}{1-\tan ^2\alpha}

三倍角公式

sin 3 α = 3 sin α 4 sin 3 α \sin 3\alpha =3\sin \alpha -4\sin ^3\alpha

cos 3 α = 4 cos 3 α 3 cos α \cos 3\alpha =4\cos ^3\alpha -3\cos \alpha

tan 3 α = tan α tan ( π 3 + α ) tan ( π 3 α ) \tan 3\alpha =\tan \alpha \tan \left( \frac{\pi}{3}+\alpha \right) \tan \left( \frac{\pi}{3}-\alpha \right)

半角公式

sin 2 α 2 = 1 cos α 2 \sin ^2\frac{\alpha}{2}=\frac{1-\cos \alpha}{2}

cos 2 α 2 = 1 + cos α 2 \cos ^2\frac{\alpha}{2}=\frac{1+\cos \alpha}{2}

tan α 2 = sin α 1 + cos α \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha}

和差化积

sin α + sin β = 2 sin α + β 2 cos α β 2 \sin \alpha +\sin \beta =2\sin \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2}

sin α sin β = 2 sin α β 2 cos α + β 2 \sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta}{2}\cdot \cos \frac{\alpha +\beta}{2}

cos α + cos β = 2 cos α + β 2 cos α β 2 \cos \alpha +\cos \beta =2\cos \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2}

cos α cos β = 2 sin α + β 2 sin α β 2 \cos \alpha -\cos \beta =-2\sin \frac{\alpha +\beta}{2}\cdot \sin \frac{\alpha -\beta}{2}

积化和差

2 cos α cos β = cos ( α β ) + cos ( α + β ) 2\cos \alpha \cos \beta =\cos \left( \alpha -\beta \right) +\cos \left( \alpha +\beta \right)

2 sin α sin β = cos ( α + β ) cos ( α + β ) 2\sin \alpha \sin \beta =\cos \left( \alpha +\beta \right) -\cos \left( \alpha +\beta \right)

2 sin α cos β = sin ( α β ) + sin ( α + β ) 2\sin \alpha \cos \beta =\sin \left( \alpha -\beta \right) +\sin \left( \alpha +\beta \right)

万能公式(毕达哥拉斯恒等式)

第一恒等式: sin 2 α + cos 2 α = 1 \text{第一恒等式:}\sin ^2\alpha +\cos ^2\alpha =1

第二恒等式: tan 2 α + 1 = sec 2 α \text{第二恒等式:}\tan ^2\alpha +1=\sec ^2\alpha

第三恒等式: cot 2 α + 1 = csc 2 α \text{第三恒等式:}\cot ^2\alpha +1=\csc ^2\alpha


发布了11 篇原创文章 · 获赞 18 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/qq_39828850/article/details/102315261