cs231n------神经网络

知乎原文链接
这一部分,我看过了黄海广—-吴恩达老师的课程笔记,所以只做自己漏洞的补充。

激活函数比较

sigmoid

因为两个缺点,使用率下降了
1)函数饱和,使梯度消失。
当神经元的激活在接近0或1时会饱和:在这些区域,梯度几乎为0。在反向传播的时候,这个梯度将会与整个损失函数关于该门单元输出的梯度相乘,因此,如果局部梯度非常小,那么相乘结果为0,将会杀死梯度,几乎没有信号通过神经元传到权重再到数据了。
2)输出不是零中心的(结果范围在[0,1]之间)
如果输入神经元的数据总是正数,那么 W 的梯度在反向传播的过程中,要么全部是正数,要么全部是负数,这将会导致梯度下降权重更新时出现z字型的下降。然而,可以看到整个批量的数据的梯度被加起来后,对于权重的最终更新将会有不同的正负,这样就从一定程度上减轻了这个问题。因此,该问题相对于上面的神经元饱和问题来说只是个小麻烦,没有那么严重。

Tanh

它将实数值压缩到[-1,1]之间。和sigmoid神经元一样,它也存在饱和问题,但是和sigmoid神经元不同的是,它的输出是零中心的。因此,在实际操作中,tanh非线性函数比sigmoid非线性函数更受欢迎。

ReLU

在近些年ReLU变得非常流行。它的函数公式是f(x)=max(0,x)。换句话说,这个激活函数就是一个关于0的阈值(如上图左侧)。使用ReLU有以下一些优缺点:

优点:
●相较于sigmoid和tanh函数,ReLU对于随机梯度下降的收敛有巨大的加速作用( Krizhevsky 等的论文指出有6倍之多)。据称这是由它的线性,非饱和的公式导致的。
●sigmoid和tanh神经元含有指数运算等耗费计算资源的操作,而ReLU可以简单地通过对一个矩阵进行阈值计算得到。
缺点:
在训练的时候,ReLU单元比较脆弱并且可能“死掉”。举例来说,当一个很大的梯度流过ReLU的神经元的时候,可能会导致梯度更新到一种特别的状态,在这种状态下神经元将无法被其他任何数据点再次激活。如果这种情况发生,那么从此所以流过这个神经元的梯度将都变成0。也就是说,这个ReLU单元在训练中将不可逆转的死亡,因为这导致了数据多样化的丢失。例如,如果学习率设置得太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。通过合理设置学习率,这种情况的发生概率会降低。

Leaky ReLU

Leaky ReLU是为解决“ReLU死亡”问题的尝试。ReLU中当x<0时,函数值为0。而Leaky ReLU则是给出一个很小的负数梯度值,比如0.01。所以其函数公式为f(x)=1(x<0)(\alpha x)+1(x>=0)(x)其中\alpha是一个小的常量。有些研究者的论文指出这个激活函数表现很不错,但是其效果并不是很稳定。Kaiming He等人在2015年发布的论文Delving Deep into Rectifiers中介绍了一种新方法PReLU,把负区间上的斜率当做每个神经元中的一个参数。然而该激活函数在在不同任务中均有益处的一致性并没有特别清晰。

Maxout

一些其他类型的单元被提了出来,它们对于权重和数据的内积结果不再使用 f ( w T x + b ) 函数形式。一个相关的流行选择是Maxout(最近由Goodfellow等发布)神经元。Maxout是对ReLU和leaky ReLU的一般化归纳,它的函数是: m a x ( w 1 T x + b 1 , w 2 T x + b 2 )
ReLU和Leaky ReLU都是这个公式的特殊情况(比如ReLU就是当 w 1 , b 1 = 0 的时候)。
这样Maxout神经元就拥有ReLU单元的所有优点(线性操作和不饱和),而没有它的缺点(死亡的ReLU单元)。
然而和ReLU对比,它每个神经元的参数数量增加了一倍,这就导致整体参数的数量激增。

最后需要注意一点:在同一个网络中混合使用不同类型的神经元是非常少见的,虽然没有什么根本性问题来禁止这样做。

一句话:“那么该用那种呢?”用ReLU非线性函数,注意设置好学习率,或许可以监控你的网络中死亡的神经元占的比例。
如果单元死亡问题困扰你,就试试Leaky ReLU或者Maxout,不要再用sigmoid了。也可以试试tanh,但是其效果应该不如ReLU或者Maxout。

这里写图片描述
不同正则化强度的效果:每个神经网络都有20个隐层神经元,但是随着正则化强度增加,它的决策边界变得更加平滑。你可以在ConvNetsJS demo上练练手。

需要记住的是:不应该因为害怕出现过拟合而使用小网络。相反,应该进尽可能使用大网络,然后使用正则化技巧来控制过拟合。

梯度检查

理论上很简单,就是简单的把解析梯度和数值计算梯度(梯度计算有三种,解析,数值,反向传播)进行比较,然而实际操作层面上来说,这个过程很容易出错。
下面是一些提示、技巧和需要仔细注意的事情:
使用中心化公式。在使用有限差值近似来计算数值梯度的时候,常见的公式是:
d f ( x ) d x = f ( x + h ) f ( x ) h ( b a d ,   d o   n o t   u s e )
其中h是一个很小的数字,在实践中近似为1e-5。在实践中证明,使用中心化公式效果更好:
d f ( x ) d x = f ( x + h ) f ( x h ) 2 h ( u s e   i n s t e a d )
该公式在检查梯度的每个维度的时候,会要求计算两次损失函数(所以计算资源的耗费也是两倍),但是梯度的近似值会准确很多。要理解这一点,对 f ( x + h ) f ( x h ) 使用泰勒展开,可以看到第一个公式的误差近似 O ( h ) ,第二个公式的误差近似 O ( h 2 ) (是个二阶近似)。
使用相对误差来比较。比较数值梯度 f n 和解析梯度 f a 的细节有哪些?如何得知此两者不匹配?你可能会倾向于监测它们的差的绝对值 | f a f n | 或者差的平方值,然后定义该值如果超过某个规定阈值,就判断梯度实现失败。
然而该思路是有问题的
假设这个差值是1e-4,如果两个梯度值在1.0左右,这个差值看起来就很合适,可以认为两个梯度是匹配的。然而如果梯度值是1e-5或者更低,那么1e-4就是非常大的差距,梯度实现肯定就是失败的了。因此,使用相对误差总是更合适一些:
| f a f n | m a x ( | f a | , | f n | )
上式考虑了差值占两个梯度绝对值的比例。注意通常相对误差公式只包含两个式子中的一个(任意一个均可),但是我更倾向取两个式子的最大值或者取两个式子的和。这样做是为了防止在其中一个式子为0时,公式分母为0(这种情况,在ReLU中是经常发生的)。然而,还必须注意两个式子都为零且通过梯度检查的情况。

实践中:
● 相对误差>1e-2:通常就意味着梯度可能出错。
● 1e-2>相对误差>1e-4:要对这个值感到不舒服才行。
● 1e-4>相对误差:这个值的相对误差对于有不可导点的目标函数是OK的。但如果目标函数中没有kink(使用tanh和softmax),那么相对误差值还是太高。
● 1e-7或者更小:好结果,可以高兴一把了。

要知道的是网络的深度越深,相对误差就越高。所以如果你是在对一个10层网络的输入数据做梯度检查,那么1e-2的相对误差值可能就OK了,因为误差一直在累积。相反,如果一个可微函数的相对误差值是1e-2,那么通常说明梯度实现不正确。

使用双精度
一个常见的错误是使用单精度浮点数来进行梯度检查。这样会导致即使梯度实现正确,相对误差值也会很高(比如1e-2)。在我的经验而言,出现过使用单精度浮点数时相对误差为1e-2,换成双精度浮点数时就降低为1e-8的情况。

保持在浮点数的有效范围
建议通读《What Every Computer Scientist Should Konw About Floating-Point Artthmetic》一文,该文将阐明你可能犯的错误,促使你写下更加细心的代码。例如,在神经网络中,在一个批量的数据上对损失函数进行归一化是很常见的。但是,如果每个数据点的梯度很小,然后又用数据点的数量去除,就使得数值更小,这反过来会导致更多的数值问题。这就是我为什么总是会把原始的解析梯度和数值梯度数据打印出来,确保用来比较的数字的值不是过小(通常绝对值小于1e-10就绝对让人担心)。如果确实过小,可以使用一个常数暂时将损失函数的数值范围扩展到一个更“好”的范围,在这个范围中浮点数变得更加致密。比较理想的是1.0的数量级上,即当浮点数指数为0时。

目标函数的不可导点(kinks)
在进行梯度检查时,一个导致不准确的原因是不可导点问题。不可导点是指目标函数不可导的部分,由ReLU(max(0,x))等函数,或SVM损失,Maxout神经元等引入。考虑当x=-1e6的时,对ReLU函数进行梯度检查。因为 x < 0 ,所以解析梯度在该点的梯度为0。然而,在这里数值梯度会突然计算出一个非零的梯度值,因为 f ( x + h ) 可能越过了不可导点(例如:如果h>1e-6),导致了一个非零的结果。你可能会认为这是一个极端的案例,但实际上这种情况很常见。例如,一个用CIFAR-10训练的SVM中,因为有50,000个样本,且根据目标函数每个样本产生9个式子,所以包含有450,000个 m a x ( 0 , x ) 式子。而一个用SVM进行分类的神经网络因为采用了ReLU,还会有更多的不可导点。

注意,在计算损失的过程中是可以知道不可导点有没有被越过的。在具有 m a x ( x , y ) 形式的函数中持续跟踪所有“赢家”的身份,就可以实现这一点。其实就是看在前向传播时,到底x和y谁更大。如果在计算 f ( x + h ) f ( x h ) 的时候,至少有一个“赢家”的身份变了,那就说明不可导点被越过了,数值梯度会不准确。

使用少量数据点
解决上面的不可导点问题的一个办法是使用更少的数据点。因为含有不可导点的损失函数(例如:因为使用了ReLU或者边缘损失等函数)的数据点越少,不可导点就越少,所以在计算有限差值近似时越过不可导点的几率就越小。还有,如果你的梯度检查对2-3个数据点都有效,那么基本上对整个批量数据进行梯度检查也是没问题的。所以使用很少量的数据点,能让梯度检查更迅速高效。

谨慎设置步长h
在实践中h并不是越小越好,因为当h特别小的时候,就可能就会遇到数值精度问题。有时候如果梯度检查无法进行,可以试试将h调到1e-4或者1e-6,然后突然梯度检查可能就恢复正常。这篇维基百科文章中有一个图表,其x轴为h值,y轴为数值梯度误差。

在操作的特性模式中梯度检查
有一点必须要认识到:梯度检查是在参数空间中的一个特定(往往还是随机的)的单独点进行的。即使是在该点上梯度检查成功了,也不能马上确保全局上梯度的实现都是正确的。还有,一个随机的初始化可能不是参数空间最优代表性的点,这可能导致进入某种病态的情况,即梯度看起来是正确实现了,实际上并没有。例如,SVM使用小数值权重初始化,就会把一些接近于0的得分分配给所有的数据点,而梯度将会在所有的数据点上展现出某种模式。一个不正确实现的梯度也许依然能够产生出这种模式,但是不能泛化到更具代表性的操作模式,比如在一些的得分比另一些得分更大的情况下就不行。因此为了安全起见,最好让网络学习(“预热”)一小段时间,等到损失函数开始下降的之后再进行梯度检查。在第一次迭代就进行梯度检查的危险就在于,此时可能正处在不正常的边界情况,从而掩盖了梯度没有正确实现的事实。

损失函数

训练期间第一个要跟踪的数值就是损失值,它在前向传播时对每个独立的批数据进行计算。下图展示的是随着损失值随时间的变化,尤其是曲线形状会给出关于学习率设置的情况:
这里写图片描述
左图展示了不同的学习率的效果。过低的学习率导致算法的改善是线性的。高一些的学习率会看起来呈几何指数下降,更高的学习率会让损失值很快下降,但是接着就停在一个不好的损失值上(绿线)。这是因为最优化的“能量”太大,参数在混沌中随机震荡,不能最优化到一个很好的点上。
右图显示了一个典型的随时间变化的损失函数值,在CIFAR-10数据集上面训练了一个小的网络,这个损失函数值曲线看起来比较合理(虽然可能学习率有点小,但是很难说),而且指出了批数据的数量可能有点太小(因为损失值的噪音很大)。
损失值的震荡程度和批尺寸(batch size)有关,当批尺寸为1,震荡会相对较大。当批尺寸就是整个数据集时震荡就会最小,因为每个梯度更新都是单调地优化损失函数(除非学习率设置得过高)。

训练集和验证集准确率

在训练分类器的时候,需要跟踪的第二重要的数值是验证集和训练集的准确率。这个图表能够展现知道模型过拟合的程度:
这里写图片描述
在训练集准确率和验证集准确率中间的空隙指明了模型过拟合的程度。在图中,蓝色的验证集曲线显示相较于训练集,验证集的准确率低了很多,这就说明模型有很强的过拟合。遇到这种情况,就应该增大正则化惩罚(更强的L2权重惩罚,更多的随机失活等)或收集更多的数据。另一种可能就是验证集曲线和训练集曲线如影随形这样也不好,那怎么衡量),这种情况说明你的模型容量还不够大:应该通过增加参数数量让模型容量更大些。

权重更新比例

最后一个应该跟踪的量是权重中更新值的数量和全部值的数量之间的比例。注意:是更新的,而不是原始梯度(比如,在普通sgd中就是梯度乘以学习率)。需要对每个参数集的更新比例进行单独的计算和跟踪。一个经验性的结论是这个比例应该在1e-3左右。如果更低,说明学习率可能太小,如果更高,说明学习率可能太高。下面是具体例子:

# 假设参数向量为W,其梯度向量为dW
# 范数就是向量距离,在此用来进行范围的计算
param_scale = np.linalg.norm(W.ravel()) #将W降位一维,然后求2范数(默认求2范数)
update = -learning_rate*dW # 简单SGD更新
update_scale = np.linalg.norm(update.ravel())  
W += update # 实际更新
print update_scale / param_scale # 比例要得到1e-3左右才是好的

相较于跟踪最大和最小值,有研究者更喜欢计算和跟踪梯度的范式及其更新。这些矩阵通常是相关的,也能得到近似的结果。

每层的激活数据及梯度分布

一个不正确的初始化可能让学习过程变慢,甚至彻底停止。还好,这个问题可以比较简单地诊断出来。其中一个方法是输出网络中所有层的激活数据和梯度分布的柱状图。直观地说,就是如果看到任何奇怪的分布情况,那都不是好兆头。比如,对于使用tanh的神经元,我们应该看到激活数据的值在整个[-1,1]区间中都有分布。如果看到神经元的输出全部是0,或者全都饱和了往-1和1上跑,那肯定就是有问题了。

第一层可视化

最后,如果数据是图像像素数据,那么把第一层特征可视化会有帮助:
这里写图片描述
将神经网络第一层的权重可视化的例子。左图中的特征充满了噪音,这暗示了网络可能出现了问题:网络没有收敛,学习率设置不恰当,正则化惩罚的权重过低。右图的特征不错,平滑,干净而且种类繁多,说明训练过程进行良好。

参数更新

一旦能使用反向传播计算解析梯度,梯度就能被用来进行参数更新了

深度网络的最优化是现在非常活跃的研究领域。本节将重点介绍一些公认有效的常用的技巧,这些技巧都是在实践中会遇到的。我们将简要介绍这些技巧的直观概念,但不进行细节分析。对于细节感兴趣的读者,我们提供了一些拓展阅读。

随机梯度下降及各种更新方法

普通更新
最简单的更新形式是沿着负梯度方向改变参数(因为梯度指向的是上升方向,但是我们通常希望最小化损失函数)。假设有一个参数向量x及其梯度dx,那么最简单的更新的形式是:

# 普通更新
x += - learning_rate * dx

其中learning_rate是一个超参数,它是一个固定的常量。当在整个数据集上进行计算时,只要学习率足够低,总是能在损失函数上得到非负的进展。

动量(Momentum)更新
这个方法在深度网络上几乎总能得到更好的收敛速度。该方法可以看成是从物理角度上对于最优化问题得到的启发。损失值可以理解为是山的高度(因此高度势能是 U = m g h ,所以有 U h U h ),用随机数字初始化参数等同于在某个位置给质点设定初始速度为0。这样最优化过程可以看做是模拟参数向量(即质点)在地形上滚动的过程。

因为作用于质点的力与梯度的潜在能量( F = U )有关,质点所受的力就是损失函数的(负)梯度。还有,因为 F = m a ,所以在这个观点下(负)梯度与质点的加速度是成比例的。注意这个理解和上面的随机梯度下降(SDG)是不同的,在普通版本中,梯度直接影响位置。而在这个版本的更新中,物理观点建议梯度只是影响速度,然后速度再影响位置:(不懂)

# 动量更新
v = mu * v - learning_rate * dx # 与速度融合
x += v # 与位置融合

在这里引入了一个初始化为0的变量v和一个超参数mu。说得不恰当一点,这个变量(mu)在最优化的过程中被看做动量(一般值设为0.9),但其物理意义与摩擦系数更一致。这个变量有效地抑制了速度,降低了系统的动能,不然质点在山底永远不会停下来。通过交叉验证,这个参数通常设为[0.5,0.9,0.95,0.99]中的一个。和学习率随着时间退火(下文有讨论)类似,动量随时间变化的设置有时能略微改善最优化的效果,其中动量在学习过程的后阶段会上升。一个典型的设置是刚开始将动量设为0.5而在后面的多个周期(epoch)中慢慢提升到0.99。

通过动量更新,参数向量会在任何有持续梯度的方向上增加速度。

Nesterov动量
与普通动量有些许不同,最近变得比较流行。在理论上对于凸函数它能得到更好的收敛,在实践中也确实比标准动量表现更好一些。
核心思路是当参数向量位于某个位置x时,观察上面的动量更新公式可以发现,动量部分(忽视带梯度的第二个部分)会通过mu * v稍微改变参数向量。因此,如果要计算梯度,那么可以将未来的近似位置x + mu * v看做是“向前看”,这个点在我们一会儿要停止的位置附近。因此,计算x + mu * v的梯度,而不是“旧”位置x的梯度,就有意义了。
这里写图片描述
Nesterov动量。既然我们知道动量将会把我们带到绿色箭头指向的点,我们就不要在原点(红色点)那里计算梯度了。使用Nesterov动量,我们就在这个“向前看”的地方计算梯度。
也就是说,添加一些注释后,实现代码如下:

x_ahead = x + mu * v
# 计算dx_ahead(在x_ahead处的梯度,而不是在x处的梯度)
v = mu * v - learning_rate * dx_ahead
x += v

然而在实践中,人们更喜欢和普通SGD或上面的动量方法一样简单的表达式。通过对x_ahead = x + mu * v使用变量变换进行改写是可以做到的,然后用x_ahead而不是x来表示上面的更新。也就是说,实际存储的参数向量总是向前一步的那个版本。x_ahead的公式(将其重新命名为x)就变成了:
(公式咋来的不懂)

v_prev = v # 存储备份
v = mu * v - learning_rate * dx # 速度更新保持不变
x += -mu * v_prev + (1 + mu) * v # 位置更新变了形式

学习率退火

在训练深度网络的时候,让学习率随着时间退火通常是有帮助的。
这样理解:如果学习率很高,系统的动能就过大,参数向量就会无规律地跳动,不能够稳定到损失函数更深更窄的部分去。
知道什么时候开始衰减学习率是有技巧的:慢慢减小它,可能在很长时间内只能是浪费计算资源地看着它混沌地跳动,实际进展很少。但如果快速地减少它,系统可能过快地失去能量,不能到达原本可以到达的最好位置。
通常,实现学习率退火有3种方式:

随步数衰减:每进行几个周期就根据一些因素降低学习率。典型的值是每过5个周期就将学习率减少一半,或者每20个周期减少到之前的0.1。这些数值的设定是严重依赖具体问题和模型的选择的。
实践中可能看见这么一种经验做法:使用一个固定的学习率来进行训练的同时观察验证集错误率,每当验证集错误率停止下降,就乘以一个常数(比如0.5)来降低学习率。
指数衰减:数学公式是 α = α 0 e k t ,其中 α 0 , k 是超参数,t是迭代次数(也可以使用周期作为单位)。
1/t衰减:数学公式是 α = α 0 / ( 1 + k t ) ,其中 α 0 , k 是超参数,t是迭代次数。

在实践中,我们发现随步数衰减的随机失活(dropout)更受欢迎,因为它使用的超参数(衰减系数和以周期为时间单位的步数)比k更有解释性。最后,如果你有足够的计算资源,可以让衰减更加缓慢一些,让训练时间更长些。

二阶方法(不懂)

在深度网络背景下,第二类常用的最优化方法是基于牛顿法的,其迭代如下:

\displaystyle x\leftarrow x-[Hf(x)]^{-1}\nabla f(x)
这里Hf(x)是Hessian矩阵,它是函数的二阶偏导数的平方矩阵。\nabla f(x)是梯度向量,这和梯度下降中一样。直观理解上,Hessian矩阵描述了损失函数的局部曲率,从而使得可以进行更高效的参数更新。具体来说,就是乘以Hessian转置矩阵可以让最优化过程在曲率小的时候大步前进,在曲率大的时候小步前进。需要重点注意的是,在这个公式中是没有学习率这个超参数的,这相较于一阶方法是一个巨大的优势。

然而上述更新方法很难运用到实际的深度学习应用中去,这是因为计算(以及求逆)Hessian矩阵操作非常耗费时间和空间。举例来说,假设一个有一百万个参数的神经网络,其Hessian矩阵大小就是[1,000,000 x 1,000,000],将占用将近3,725GB的内存。这样,各种各样的拟-牛顿法就被发明出来用于近似转置Hessian矩阵。在这些方法中最流行的是L-BFGS,该方法使用随时间的梯度中的信息来隐式地近似(也就是说整个矩阵是从来没有被计算的)。

猜你喜欢

转载自blog.csdn.net/acbattle/article/details/80240491