网络基础(三)

网络基础(三)

一、IP协议

在这里插入图片描述

1.基本概念

  • 主机:配有IP地址, 但是不进行路由控制的设备;
  • 路由器: 即配有IP地址, 又能进行路由控制;
  • 节点: 主机和路由器的统称;

2.协议头格式
在这里插入图片描述

  • 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.
  • 4位头部长度(header length): IP头部的长度是多少个32bit, 也就是 length * 4 的字节数. 4bit表示最大的数字是15, 因此IP头部最大长度是60字节.
  • 8位服务类型(Type Of Service): 3位优先权字段(已经弃用), 4位TOS字段, 和1位保留字段(必须置为0). 4位TOS分别表示: 最小延时, 最大吞吐量, 最高可靠性, 最小成本. 这四者相互冲突, 只能选择一个. 对于ssh/telnet这样的应用程序, 最小延时比较重要; 对于ftp这样的程序, 最大吞吐量比较重要.
  • 16位总长度(total length): IP数据报整体占多少个字节.
  • 16位标识(id): 唯一的标识主机发送的报文. 如果IP报文在数据链路层被分片了, 那么每一个片里面的这个id都是相同的.
  • 3位标志字段: 第一位保留(保留的意思是现在不用, 但是还没想好说不定以后要用到). 第二位置为1表示禁止分片, 这时候如果报文长度超过MTU, IP模块就会丢弃报文. 第三位表示"更多分片", 如果分片了的话,最后一个分片置为1, 其他是0. 类似于一个结束标记.
  • 13位分片偏移(framegament offset): 是分片相对于原始IP报文开始处的偏移. 其实就是在表示当前分片在原报文中处在哪个位置. 实际偏移的字节数是这个值 * 8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是8的整数倍(否则报文就不连续了).
  • 8位生存时间(Time To Live, TTL): 数据报到达目的地的最大报文跳数. 一般是64. 每次经过一个路由, TTL-= 1, 一直减到0还没到达, 那么就丢弃了. 这个字段主要是用来防止出现路由循环
  • 8位协议: 表示上层协议的类型
  • 16位头部校验和: 使用CRC进行校验, 来鉴别头部是否损坏。
  • 32位源地址和32位目标地址: 表示发送端和接收端.
  • 选项字段(不定长, 最多40字节):

3.网段划分

IP地址分为两个部分, 网络号和主机号
网络号: 保证相互连接的两个网段具有不同的标识;
主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号;

在这里插入图片描述

  • 不同的子网其实就是把网络号相同的主机放到一起.
  • 如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复

通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同

曾经提出一种划分网络号和主机号的方案:
在这里插入图片描述

  • A类 0.0.0.0到127.255.255.255
  • B类 128.0.0.0到191.255.255.255
  • C类 192.0.0.0到223.255.255.255
  • D类 224.0.0.0到239.255.255.255
  • E类 240.0.0.0到247.255.255.255

这种划分方案的局限性很快显现出来,大多数组织都申请B类网络地址, 导致B类地址很快就分配完了, 而A类却浪费了大量地址;

例如, 申请了一个B类地址, 理论上一个子网内能允许6万5千多个主机. A类地址的子网内的主机数更多(B类只有16位).
然而实际网络架设中, 不会存在一个子网内有这么多的情况. 因此大量的IP地址都被浪费掉了

新的划分方案, 称为CIDR(Classless Interdomain Routing):

引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;
子网掩码也是一个32位的正整数. 通常用一串 “0” 来结尾;将IP地址和子网掩码进行 “按位与” 操作, 得到的结果就是网络号;网络号和主机号的划分与这个IP地址是A类、B类还是C类无关

特殊的IP地址

  • 将IP地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网;
  • 将IP地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包;
  • 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1

IP地址的数量限制

  • 我们知道, IP地址(IPv4)是一个4字节32位的正整数. 那么一共只有 2的32次方 个IP地址, 大概是43亿左右.而TCP/IP协议规定, 每个主机都需要有一个IP地址.这意味着, 一共只有43亿台主机能接入网络么?
  • 实际上, 由于一些特殊的IP地址的存在, 数量远不足43亿; 另外IP地址并非是按照主机台数来配置的, 而是每一个网卡都需要配置一个或多个IP地址.
  • CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率, 减少了浪费, 但是IP地址的绝对上限并没有增加), 仍然不是很够用. 这时候有三种方式来解决:
  • 动态分配IP地址: 只给接入网络的设备分配IP地址. 因此同一个MAC地址的设备, 每次接入互联网中, 得到的IP地址不一定是相同的;
  • NAT技术
  • IPv6: IPv6并不是IPv4的简单升级版. 这是互不相干的两个协议, 彼此并不兼容; IPv6用16字节128位来表示一个IP地址; 但是目前IPv6还没有普及

私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上 使用任意的IP地址都可以,但是RFC 1918规定了用于组建局域网的私有IP地址

  • 10.*,前8位是网络号,共16,777,216个地址
  • 172.16.到172.31.,前12位是网络号,共1,048,576个地址
  • 192.168.*,前16位是网络号,共65,536个地址
  • 包含在这个范围中的, 都成为私有IP, 其余的则称为全局IP(或公网IP)

二、以太网

1.认识以太网

"以太网" 不是一种具体的网络, 而是一种技术标准; 既包含了数据链路层的内容, 也包含了一些物理层的内容. 例如: 规定了网络拓扑结构, 访问控制方式, 传输速率等;
例如以太网中的网线必须使用双绞线; 传输速率有10M, 100M, 1000M等;
以太网是当前应用最广泛的局域网技术; 和以太网并列的还有令牌环网, 无线LAN等

2.以太网帧格式

在这里插入图片描述

  • 源地址和目的地址是指网卡的硬件地址(也叫MAC地址), 长度是48位,是在网卡出厂时固化的;
  • 帧协议类型字段有三种值,分别对应IP、ARP、RARP;
  • 帧末尾是CRC校验码

3.认识MTU

MTU相当于发快递时对包裹尺寸的限制. 这个限制是不同的数据链路对应的物理层, 产生的限制.

  • 以太网帧中的数据长度规定最小46字节,最大1500字节,ARP数据包的长度不够46字节,要在后面补填充 位;
  • 最大值1500称为以太网的最大传输单元(MTU),不同的网络类型有不同的MTU
  • 如果一个数据包从以太网路由到拨号链路上,数据包长度大于拨号链路的MTU了,则需要对数据包进行分片(fragmentation);
  • 不同的数据链路层标准的MTU是不同的

4.MTU对IP协议的影响

  • 由于数据链路层MTU的限制, 对于较大的IP数据包要进行分包. 将较大的IP包分成多个小包, 并给每个小包打上标签;
  • 每个小包IP协议头的16位标识(id) 都是相同的;
  • 每个小包的IP协议头的3位标志字段中, 第2位置为0, 表示允许分片, 第3位来表示结束标记(当前是否是最 后一个小包, 是的话置为1, 否则置为0);
  • 到达对端时再将这些小包, 会按顺序重组,拼装到一起返回给传输层;
  • 一旦这些小包中任意一个小包丢失, 接收端的重组就会失败. 但是IP层不会负责重新传输数据

5.MTU对UDP协议的影响

  • 一旦UDP携带的数据超过1472(1500 - 20(IP首部) - 8(UDP首部)), 那么就会在网络层分成多个IP数据报.
  • 这多个UDP数据报有任意一个丢失, 都会引起接收端网络层重组失败. 那么这就意味着, 如果UDP数据报在 网络层被分片, 整个数据被丢失的概率就大大增加了

6.MTU对于TCP协议的影响

  • TCP的一个数据报也不能无限大, 还是受制于MTU.
  • TCP的单个数据报的最大消息长度, 称为MSS(Max Segment Size);
  • TCP在建立连接的过程中, 通信双方会进行MSS协商. 最理想的情况下, MSS的值正好是在IP不会被分片处理的最大长度(这个长度仍然是受制于数据链路层的 MTU).
  • 双方在发送SYN的时候会在TCP头部写入自己能支持的MSS值. 然后双方得知对方的MSS值之后, 选择较小的作为最终MSS
  • MSS的值就是在TCP首部的40字节变长选项中(kind=2)

三、ARP协议

1 . ARP协议的作用

ARP协议建立了主机 IP地址 和 MAC地址 的映射关系.

在网络通讯时,源主机的应用程序知道目的主机的IP地址和端口号,却不知道目的主机的硬件地址;数据包首先是被网卡接收到再去处理上层协议的,如果接收到的数据包的硬件地址与本机不符,则直接丢弃;

因此在通讯前必须获得目的主机的硬件地址;

  • 源主机发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”, 并将这个请求广播到本地网段(以太网帧首部的硬件地址填FF:FF:FF:FF:FF:FF表示广播);
  • 目的主机接收到广播的ARP请求,发现其中的IP地址与本机相符,则发送一个ARP应答数据包给源主机,将自己的硬件地址填写在应答包中;
  • 每台主机都维护一个ARP缓存表,可以用arp -a命令查看。缓存表中的表项有过期时间(一般为20分钟),如果20分钟内没有再次使用某个表项,则该表项失效,下次还要发ARP请求来获得目的主机的硬件地址

2.ARP数据报的格式

在这里插入图片描述

四、DNS(Domain Name System)

DNS是一整套从域名映射到IP的系统

TCP/IP中使用IP地址和端口号来确定网络上的一台主机的一个程序. 但是IP地址不方便记忆.
于是人们发明了一种叫主机名的东西, 是一个字符串, 并且使用hosts文件来描述主机名和IP地址的关系

浏览器中输入url后, 发生的事情

浏览器中输入url后, 发生的事情

五、ICMP协议

1 . ICMP协议是一个 网络层协议

一个新搭建好的网络, 往往需要先进行一个简单的测试, 来验证网络是否畅通; 但是IP协议并不提供可靠传输. 如果丢包了, IP协议并不能通知传输层是否丢包以及丢包的原因

2.ICMP主要功能包括:

  • 确认IP包是否成功到达目标地址.
  • 通知在发送过程中IP包被丢弃的原因.
  • ICMP也是基于IP协议工作的. 但是它并不是传输层的功能,因此人们仍然把它归结为网络层协议;
  • ICMP只能搭配IPv4使用. 如果是IPv6的情况下, 需要是用ICMPv6

六、NAT技术

NAT技术当前解决IP地址不够用的主要手段, 是路由器的一个重要功能; NAT能够将私有IP对外通信时转为全局IP. 也就是就是一种将私有IP和全局IP相互转化的技术方法:

  • 很多学校, 家庭, 公司内部采用每个终端设置私有IP, 而在路由器或必要的服务器上设置全局IP;
  • 全局IP要求唯一, 但是私有IP不需要; 在不同的局域网中出现相同的私有IP是完全不影响

2.NAPT技术

  • 那么问题来了, 如果局域网内, 有多个主机都访问同一个外网服务器, 那么对于服务器返回的数据中, 目的IP都是相同
    的. 那么NAT路由器如何判定将这个数据包转发给哪个局域网的主机?
    这时候NAPT来解决这个问题了. 使用IP+port来建立这个关联关系

3.NAT技术的缺陷

  • 由于NAT依赖这个转换表, 所以有诸多限制: 无法从NAT外部向内部服务器建立连接;
  • 装换表的生成和销毁都需要额外开销;
  • 通信过程中一旦NAT设备异常, 即使存在热备, 所有的TCP连接也都会断开

4.NAT和代理服务器

  • 路由器往往都具备NAT设备的功能, 通过NAT设备进行中转, 完成子网设备和其他子网设备的通信过程.
  • 代理服务器看起来和NAT设备有一点像. 客户端像代理服务器发送请求, 代理服务器将请求转发给真正要请求的服务器; 服务器返回结果后, 代理服务器又把结果回传给客户端.
  • 那么NAT和代理服务器的区别有哪些呢?
  • 从应用上讲, NAT设备是网络基础设备之一, 解决的是IP不足的问题. 代理服务器则是更贴近具体应用, 比如通过代理服务器进行翻墙, 另外像迅游这样的加速器, 也是使用代理服务器.
  • 从底层实现上讲, NAT是工作在网络层, 直接对IP地址进行替换. 代理服务器往往工作在应用层.
  • 从使用范围上讲, NAT一般在局域网的出口部署, 代理服务器可以在局域网做, 也可以在广域网做, 也可以跨网.
  • 从部署位置上看, NAT一般集成在防火墙, 路由器等硬件设备上, 代理服务器则是一个软件程序, 需要部署在服务器上.
  • 代理服务器是一种应用比较广的技术

总结:

数据链路层

  • 数据链路层的作用: 两个设备(同一种数据链路节点)之间进行传递数据
  • 以太网是一种技术标准; 既包含了数据链路层的内容,也包含了一些物理层的内容. 例如: 规定了网络拓扑 结构, 访问控制方式, 传输速率等;
  • 以太网帧格式
  • 理解mac地址
  • 理解arp协议
  • 理解MTU

网络层

  • 网络层的作用: 在复杂的网络环境中确定一个合适的路径.
  • 理解IP地址,
  • 理解IP地址和MAC地址的区别.
  • 理解IP协议格式.
  • 了解网段划分方法
  • 理解如何解决IP数目不足的问题,
  • 掌握网段划分的两种方案. 理解私有IP和公网IP 理解网络层的IP地址路由过程.
  • 理解一个数据包如何跨越网段到达最终目的地. 理解IP数据包分包的原因.
  • 了解ICMP协议.
  • 了解NAT设备的工作原理.

传输层

  • 传输层的作用: 负责数据能够从发送端传输接收端. 理解端口号的概念.
  • 认识TCP协议,
  • 理解TCP协议的可靠性.
  • 理解TCP协议的状态转化.
  • 掌握TCP的连接管理, 确认应答, 超时重传, 滑动窗口,流量控制, 拥塞控制, 延迟应答, 捎带应答特性. 理解TCP面向字节流, 理解粘包问题和解决方案.
  • 能够基于UDP实现可靠传输.
  • 理解MTU对UDP/TCP的影响.

应用层

  • 应用层的作用: 满足我们日常需求的网络程序, 都是在应用层 能够根据自己的需求, 设计应用层协议.
  • 了解HTTP协议.
  • 理解DNS的原理和工作流程
发布了75 篇原创文章 · 获赞 29 · 访问量 8万+

猜你喜欢

转载自blog.csdn.net/wolfGuiDao/article/details/104310612
今日推荐