集合底层实现原理

ArrayList

  ArrayList是List接口的可变数组非同步实现,并允许包括null在内的所有元素。底层使用数组实现。类的属性中核心的属性为elementData,类型为Object[],用于存放实际元素,并且被标记为transient,也就意味着在序列化的时候,此字段是不会被序列化的。
该集合是可变长度数组,每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。数组扩容通过方法ensureCapacity(int minCapacity)来实现。数组扩容时,会将老数组中的元素重新拷贝一份到新的数组中,每次数组容量增长大约是其容量的1.5倍,这种操作的代价很高。若是能预估到顶峰容量,可以设置一个足够大的量以避免数组容量以后的扩展。add函数源码:

   public boolean add(E e) { // 添加元素
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

说明:在add函数中有ensureCapacityInternal,此函数可以理解为确保elementData数组有合适的大小。ensureCapacityInternal的具体函数如下:

private void ensureCapacityInternal(int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { // 判断元素数组是否为空数组
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); // 取较大值
        }
        ensureExplicitCapacity(minCapacity);
    }

在ensureCapacityInternal函数中有ensureExplicitCapacity函数,这个函数也是为了确保elemenData数组有合适的大小。ensureExplicitCapacity的具体函数如下:

private void ensureExplicitCapacity(int minCapacity) {
        // 结构性修改加1
        modCount++;
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

在ensureExplicitCapacity函数又发现了grow函数,grow函数才会对数组进行扩容,ensureCapacityInternal、ensureExplicitCapacity都只是过程,最后完成实际扩容操作还是得看grow函数,grow函数的具体函数如下:

 private void grow(int minCapacity) {
        int oldCapacity = elementData.length; // 旧容量
        int newCapacity = oldCapacity + (oldCapacity >> 1); // 新容量为旧容量的1.5倍
        if (newCapacity - minCapacity < 0) // 新容量小于参数指定容量,修改新容量
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0) // 新容量大于最大容量
            newCapacity = hugeCapacity(minCapacity); // 指定新容量
        // 拷贝扩容
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

正常情况下会扩容1.5倍,特殊情况下(新扩展数组大小已经达到了最大值)则只取最大值。当调用add方法时,实际上的函数调用如下:
在这里插入图片描述
  ArrayList采用了Fail-Fast机制,通过记录modCount参数来实现。面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。
  remove方法会让下标到数组末尾的元素向前移动一个单位,并把最后一位的值置空,方便GC。add、remove操作对于ArrayList其运行时间是O(N²),因为在它当中在前端进行添加或移除是O(N)操作;get方法的调用为O(N)操作。要是使用一个增强的for循环,对于任意List的运行时间都是O(N),因为迭代器将有效地从一项到下一项推进。

LinkedList

  LinkedList是List接口的双向链表非同步实现,并允许包括null在内的所有元素。底层的数据结构是基于双向链表的,该数据结构称为节点。双向链表节点对应的类Node的实例,Node中包含成员变量:prev,next,item。其中,prev是该节点的上一个节点,next是该节点的下一个节点,item是该节点所包含的值。
node函数,此函数是根据索引下标找到该结点并返回,具体代码如下:

Node<E> node(int index) {
        // 判断插入的位置在链表前半段或者是后半段
        if (index < (size >> 1)) { // 插入位置在前半段
            Node<E> x = first; 
            for (int i = 0; i < index; i++) // 从头结点开始正向遍历
                x = x.next;
            return x; // 返回该结点
        } else { // 插入位置在后半段
            Node<E> x = last; 
            for (int i = size - 1; i > index; i--) // 从尾结点开始反向遍历
                x = x.prev;
            return x; // 返回该结点
        }
    }

它的查找是分两半查找,先判断index是在链表的哪一半,然后再去对应区域查找,在根据索引查找结点时,会有一个小优化,结点在前半段则从头开始遍历,在后半段则从尾开始遍历,这样就保证了只需要遍历最多一半结点就可以找到指定索引的结点。
  add、remove操作对于LinkedList其运行时间是O(N);get方法的调用为O(N²)操作。要是使用一个增强的for循环,对于任意List的运行时间都是O(N),因为迭代器将有效地从一项到下一项推进。
对addAll函数的思考
  addAll有两个重载函数,addAll(Collection<? extends E>)型和addAll(int, Collection<? extends E>)型,这里对addAll(int, Collection<? extends E>)型进行分析。

// 添加一个集合
    public boolean addAll(int index, Collection<? extends E> c) {
        // 检查插入的的位置是否合法
        checkPositionIndex(index);
        // 将集合转化为数组
        Object[] a = c.toArray();
        // 保存集合大小
        int numNew = a.length;
        if (numNew == 0) // 集合为空,直接返回
            return false;
        Node<E> pred, succ; // 前驱,后继
        if (index == size) { // 如果插入位置为链表末尾,则后继为null,前驱为尾结点
            succ = null;
            pred = last;
        } else { // 插入位置为其他某个位置
            succ = node(index); // 寻找到该结点
            pred = succ.prev; // 保存该结点的前驱
        }
        for (Object o : a) { // 遍历数组
            @SuppressWarnings("unchecked") E e = (E) o; // 向下转型
            // 生成新结点
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null) // 表示在第一个元素之前插入(索引为0的结点)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
        if (succ == null) { // 表示在最后一个元素之后插入
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }
        // 修改实际元素个数
        size += numNew;
        // 结构性修改加1
        modCount++;
        return true;
    }

说明:参数中的index表示在索引下标为index的结点(实际上是第index + 1个结点)的前面插入。在addAll函数中,addAll函数中会调用到node函数,get函数也会调用到node函数。
  在addAll函数中,传入一个集合参数和插入位置,然后将集合转化为数组,然后再遍历数组,挨个添加数组的元素,但是问题来了,为什么要先转化为数组再进行遍历,而不是直接遍历集合呢?

  1. 如果直接遍历集合的话,那么在遍历过程中需要插入元素,在堆上分配内存空间,修改指针域,这个过程中就会一直占用着这个集合,考虑正确同步的话,其他线程只能一直等待。
  2. 如果转化为数组,只需要遍历集合,而遍历集合过程中不需要额外的操作,所以占用的时间相对是较短的,这样就利于其他线程尽快的使用这个集合。说白了,就是有利于提高多线程访问该集合的效率,尽可能短时间的阻塞。

HashMap

  HashMap是基于哈希表的Map接口的非同步实现,允许使用null值和null键,但不保证映射的顺序。底层使用数组实现,数组中每一项是个单向链表,即数组和链表的结合体;当链表长度大于一定阈值时,链表转换为红黑树,这样减少链表查询时间。

transient Entry[] table;  
  
static class Entry<K,V> implements Map.Entry<K,V> {  
    final K key;  
    V value;  
    Entry<K,V> next;  
    final int hash;  
    ……  
}  

Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

public V put(K key, V value) {  
    // HashMap允许存放null键和null值。  
    // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。  
    if (key == null)  
        return putForNullKey(value);  
    // 根据key的keyCode重新计算hash值。  
    int hash = hash(key.hashCode());  
    // 搜索指定hash值在对应table中的索引。  
    int i = indexFor(hash, table.length);  
    // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。  
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    // 如果i索引处的Entry为null,表明此处还没有Entry。  
    modCount++;  
    // 将key、value添加到i索引处。  
    addEntry(hash, key, value, i);  
    return null;  
}  

  当往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),再根据equals方法决定其在该数组位置上的链表中的存储位置。如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。
  addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处,源码如下:

void addEntry(int hash, K key, V value, int bucketIndex) {  
    // 获取指定 bucketIndex 索引处的 Entry   
    Entry<K,V> e = table[bucketIndex];  
    // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry  
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  
    // 如果 Map 中的 key-value 对的数量超过了极限  
    if (size++ >= threshold)  
    // 把 table 对象的长度扩充到原来的2倍。  
        resize(2 * table.length);  
}  

当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。

static int hash(int h) {  
    h ^= (h >>> 20) ^ (h >>> 12);  
    return h ^ (h >>> 7) ^ (h >>> 4);  
}  

在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置,通过hash算法找到这个位置。HashMap的数据结构是数组和链表的结合,所以希望这个HashMap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当用hash算法求得这个位置的时候,马上就可以确定对应位置的元素,而不用再去遍历链表,这样就大大优化了查询的效率。
  对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

static int indexFor(int h, int length) {  
    return h & (length-1);  
}  

通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的 n 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:

int capacity = 1;  
    while (capacity < initialCapacity)  
        capacity <<= 1;  

这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。所以说,当数组长度为2的n次幂的时候,不同的key算得的index相同的几率较小,那么数据在数组上分布就比较均匀,即碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
  当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部。
  当需要取出一个Node时,也会根据key的hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Node。
  HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

  HashMap的resize(rehash):当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
  HashMap何时进行扩容?当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75。默认情况下,数组大小为16,那么当HashMap中元素个数超过16 * 0.75=12的时候,就把数组的大小扩展为 2 *16=32,即扩大一倍,然后重新计算每个元素在数组中的位置。
  HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。采用Fail-Fast机制,通过一个modCount值记录修改次数,对HashMap内容的修改都将增加这个值。迭代器初始化过程中会将这个值赋给迭代器的expectedModCount,在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map,马上抛出异常。

Hashtable

  Hashtable是基于哈希表的Map接口的同步实现,不允许使用null值和null键。底层使用数组实现,数组中每一项是个单链表,即数组和链表的结合体。
  Hashtable 的实例有两个参数影响其性能:初始容量和加载因子。容量是哈希表中桶的数量,初始容量是哈希表创建时的容量。哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子是对哈希表在其容量自动增加之前可以达到多满的一个尺度,默认加载因子是 0.75。
  Hashtable在底层将key-value当成一个整体进行处理,这个整体就是一个Entry对象。Hashtable底层采用一个Entry[]数组来保存所有的key-value对,当需要存储一个Entry对象时,会根据key的hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据key的hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。
  Hashtable是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table,count,threshold,loadFactor,modCount。

  • table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的
  • count是Hashtable的大小,它是Hashtable保存的键值对的数量
  • threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=“容量*加载因子”
  • loadFactor就是加载因子
  • modCount是用来实现fail-fast机制的

  Hashtable 的函数都是同步的,这意味着它是线程安全的。synchronized是针对整张Hash表的,即每次锁住整张表让线程独占

ConcurrentHashMap

  HashMap在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,即rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,存在同时其他的元素也在进行put操作,如果hash值相同,可能出现同时在同一数组下用链表表示,造成闭环,导致在get时会出现死循环,所以HashMap是线程不安全的。
  HashTable是线程安全的,它在所有涉及到多线程操作的都加上了synchronized关键字来锁住整个table,意味着所有的线程都在竞争一把锁,在多线程的环境下,它是安全的,但是无疑是效率低下的。
  从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树。JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)。JDK1.8版本因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了。
  JDK1.8的实现

  1. 改进一:取消segments字段,直接采用transient volatile HashEntry<K,V>[] table保存数据,采用table数组元素作为锁,从而实现了对每一行数据进行加锁,进一步减少并发冲突的概率。
  2. 改进二:将原先table数组+单向链表的数据结构,变更为table数组+单向链表+红黑树的结构。对于hash表来说,最核心的能力在于将key hash之后能均匀的分布在数组中。如果hash之后散列的很均匀,那么table数组中的每个队列长度主要为0或者1。但实际情况并非总是如此理想,虽然ConcurrentHashMap类默认的加载因子为0.75,但是在数据量过大或者运气不佳的情况下,还是会存在一些队列长度过长的情况,如果还是采用单向列表方式,那么查询某个节点的时间复杂度为O(n);因此,对于个数超过8(默认值)的列表,jdk1.8中采用了红黑树的结构,那么查询的时间复杂度可以降低到O(logN),可以改进性能。
      从1.7到1.8版本,由于HashEntry从链表变成了红黑树,所以 ConcurrentHashMap的时间复杂度从O(n)到O(log(n)),HashEntry最小的容量为2。ConcurrentHashMap的1.7版本的 Segment ,它的初始化容量是16。HashEntry在1.8中称为Node,链表转红黑树的值是8,当Node链表的节点数大于8时Node会自动转化为TreeNode,转换成红黑树的结构。JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作。
      Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据。TreeNode继承于Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,它就是通过TreeNode作为存储结构代替Node来转换成黑红树。TreeBin是封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制。
      ConcurrentHashMap的初始化其实是一个空实现,并没有做任何事,这也是和其他的集合类有区别的地方,初始化操作并不是在构造函数实现的,而是在put操作中实现。
    put操作
public V put(K key, V value) {
    return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) { //对这个table进行迭代
        Node<K,V> f; int n, i, fh;
        //这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { //表示该节点是链表结构
                        binCount = 1;
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //这里涉及到相同的key进行put就会覆盖原先的value
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {  //插入链表尾部
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {//红黑树结构
                        Node<K,V> p;
                        binCount = 2;
                        //红黑树结构旋转插入
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);//统计size,并且检查是否需要扩容
    return null;
}

put的过程可以分成以下六步流程来概述:

  1. 如果没有初始化就先调用initTable()方法来进行初始化过程
  2. 如果没有hash冲突就直接CAS插入
  3. 如果还在进行扩容操作就先进行扩容
  4. 如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入
  5. 最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
  6. 如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容

  initTable()方法中没有hash冲突就直接调用Unsafe的方法CAS插入该元素,进入第三步如果容器正在扩容,则会调用helpTransfer()方法帮助扩容。  helpTransfer()方法的目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作。
  扩容过程主要涉及到多线程并发扩容,ForwardingNode的作用就是支持扩容操作,将已处理的节点和空节点置为ForwardingNode,并发处理时多个线程经过ForwardingNode就表示已经遍历了,就往后遍历,下图是多线程合作扩容的过程:
在这里插入图片描述
再次回到put流程,在第四步中是向链表或者红黑树里加节点,到第五步,会调用treeifyBin()方法进行链表转红黑树的过程。到第六步表示已经数据加入成功了,现在put调用addCount()方法计算ConcurrentHashMap的size,在原来的基础上加一。对于put的流程在并发处理中使用的是乐观锁,当有冲突的时候才进行并发处理。

get操作

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); //计算两次hash
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素
        if ((eh = e.hash) == h) { //如果该节点就是首节点就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
        //查找,查找到就返回
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

ConcurrentHashMap的get操作的流程分为三个步骤来描述:

  1. 计算hash值,定位到该table索引位置,如果是首节点符合就返回
  2. 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
  3. 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null

size操作
  在JDK1.8版本中,对于size的计算,在扩容和addCount()方法就已经有处理了,在size的时候返回结果。

JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock?因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了。在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存

HashSet

  HashSet由哈希表(实际上是一个HashMap实例)支持,不保证set的迭代顺序,并允许使用null元素。HashSet中不允许有重复元素,这是因为HashSet是基于HashMap实现的,HashSet中的元素都存放在HashMap的key上面,而value中的值都是统一的一个固定对象private static final Object PRESENT = new Object();
Add()方法

public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

PRESENT为HashSet类中定义的一个使用static final 修饰的常量,并无实际的意义,HashSet的add方法调用HashMap的put()方法实现,如果键已经存在,HashMap.put()放回的是旧值,添加失败,如果添加成功map.put()方法返回的是null ,HashSet.add()方法返回true,要添加的元素作为可map中的key 。
  判断key是否存在要重写元素的类的equals()和hashCode()方法,当向Set中添加对象时,首先调用此对象所在类的hashCode()方法,计算对象的哈希值,此哈希值决定了此对象在Set中存放的位置;若此位置没有被存储对象则直接存储,若已有对象则通过对象所在类的equals()比较两个对象是否相同,相同则不能被添加。
remove()方法

public boolean remove(Object o) {
    return map.remove(o)==PRESENT;
}

删除方法,调用map.remove()方法实现,map.remove()能找到指定的key,则返回key对应的value,对于Hashset而言,它所有的key对应的值都是PRESENT。

LinkedHashMap

  LinkedHashMap继承于HashMap,底层使用哈希表和双向链表来保存所有元素,并且它是非同步,允许使用null值和null键。基本操作与父类HashMap相似,通过重写HashMap相关方法,重新定义了数组中保存的元素Entry,来实现自己的链接列表特性。该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而构成了双向链接列表。
  LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。

LinkedHashSet

  对于LinkedHashSet而言,它继承与HashSet、又基于LinkedHashMap来实现的。 LinkedHashSet是具有可预知迭代顺序的Set接口的哈希表和链接列表实现。此实现与HashSet的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可为插入顺序或是访问顺序。

发布了138 篇原创文章 · 获赞 45 · 访问量 8万+

猜你喜欢

转载自blog.csdn.net/ThreeAspects/article/details/104158806