Java集合,ArrayList底层实现和原理

概述

文章的内容基于JDK1.7进行分析,之所以选用这个版本,是因为1.8的有些类做了改动,增加了阅读的难度,虽然是1.7,但是对于1.8做了重大改动的内容,文章也会进行说明。

在分析 ArrayList 前,需要明白几个词的概念:线性表、数组。

线性表是最基本、最简单、也是最常用的一种数据结构。线性表中数据元素之间的关系是一对一的关系,即除了第一个和最后一个数据元素之外,其它数据元素都是首尾相接的。线性表有两种存储方式:

  • 一种是顺序存储结构
  • 另一种是链式存储结构

数组,是一种典型的顺序存储结构。具有以下特点:

  • 是物理存储连续、逻辑存储连续的顺序表。

  • 利于查询。这种存储方式的优点是查询的时间复杂度为O(1),通过首地址和偏移量就可以直接访问到某元素。

  • 不利于修改。插入和删除的时间复杂度最坏能达到O(n),如果你在第一个位置插入一个元素,你需要把数组的每一个元素向后移动一位,如果你在第一个位置删除一个元素,你需要把数组的每一个元素向前移动一位。

  • 容量的固定性。就是当你不确定元素的数量时,你开的数组必须保证能够放下元素最大数量,遗憾的是如果实际数量比最大数量少很多时,你开的数组没有用到的内存就只能浪费掉了。

ArrayList作为List的典型实现,完全实现了List的全部接口功能,它是基于数组实现的List类,它封装了一个Object[]类型的数组,长度可以动态的增长。如果在创建ArrayList时没有指定Object[]数组的长度,它默认创建一个长度为10的数组,当新添加的元素已经没有位置存放的时候,ArrayList就会自动进行扩容,扩容的长度为原来长度的1.5倍。它的线程是不安全的。

数据结构

继承关系

java.lang.Object 
    java.util.AbstractCollection<E> 
        java.util.AbstractList<E> 
            java.util.ArrayList<E> 

实现接口

Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess 

基本属性

transient Object[] elementData;  //存放数组的元素,transient表示该字段不进行序列化操作
private int size;    //已经放入数组中的元素个数,非数组的长度

源码解析

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    //可序列化版本号
    private static final long serialVersionUID = 8683452581122892189L;

    //默认的初始化数组大小 为10 .
    private static final int DEFAULT_CAPACITY = 10;

    //实例化一个空数组
    private static final Object[] EMPTY_ELEMENTDATA = {};

    //存放List元素的数组
    private transient Object[] elementData;

    //List中元素的数量,和存放List元素的数组长度可能相等,也可能不相等
    private int size;

    //构造方法,指定初始化的数组长度
    public ArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
    }

    //无参构造方法
    public ArrayList() {
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    }

    //构造方法,参数为集合元素
    public ArrayList(Collection<? extends E> c) {
        //将集合转换成数组,并赋值给elementData数组
        elementData = c.toArray();
        size = elementData.length;
        //如果c.toArray返回的不是Object[]类型的数组,转换成Object[]类型
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

    //改变数组的长度,使长度和List的size相等。
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = Arrays.copyOf(elementData, size);
        }
    }

    //确定ArrayList的容量
    //判断当前elementData是否是EMPTY_ELEMENTDATA,若是设置长度为10
    public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != EMPTY_ELEMENTDATA)
            // any size if real element table
            ? 0
            // larger than default for empty table. It's already supposed to be
            // at default size.
            : DEFAULT_CAPACITY;
        //是否需要扩容
        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }
    //当前位置和默认大小之间取最大值
    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    //数组的最大容量
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    //扩容操作
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        //容量扩充1.5倍
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        //生成一个长度为newCapacity数组,并将elementData数组中元素拷贝到新数组中,并将新数组的引用赋值给elementData
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    //返回数组中已经放入的元素个数,非数组长度
    public int size() {
        return size;
    }

    //List是否为空
    public boolean isEmpty() {
        return size == 0;
    }

    //判断是否包包含指定元素
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

    //查找指定的元素,存在返回下标,不存在放回 -1 
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    //倒序查找元素,存在放回下标,不存在返回-1 
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    //因为实现了clone接口,所以需要重写clone()方法,实现对象的拷贝
    public Object clone() {
        try {
            @SuppressWarnings("unchecked")
                ArrayList<E> v = (ArrayList<E>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError();
        }
    }

    //将集合转化为数组
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    //转化为指定类型的数组元素,推荐使用此方法
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations
    //放回指定位置的数组元素
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    //返回列表中指定位置的元素
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }

    //设置指定位置的元素,并返回被替换的元素
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    //添加元素
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
    //将元素添加到指定位置上,从指定位置的元素开始所有元素向后移动,为新添加的元素提供位置
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

    //删除指定位置的元素,其他元素做相依的移动,并将最后一个元素置空,方便垃圾处理机制回收,防止内存泄露,并返回删除的元素值
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

    //删除元素方法
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    //快速删除执行操作
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    //清除列表
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

    //添加方法,添加的元素为集合
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    //从指定位置开始添加集合元素
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    //范围删除方法
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

    //下标检测方法,如果不合法,抛出IndexOutOfBoundsException异常
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    //溢出信息
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    //删除所有元素
    public boolean removeAll(Collection<?> c) {
        return batchRemove(c, false);
    }

    
    public boolean retainAll(Collection<?> c) {
        return batchRemove(c, true);
    }

    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    //流操作方法,将对象写入输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    //流操作,读方法,将对象从流中取出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    //迭代方法,返回内部类实例
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    //迭代方法,返回内部类实例
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    //迭代方法,返回内部类实例
    public Iterator<E> iterator() {
        return new Itr();
    }

    //内部类,实现Iterator接口
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;
        //是否还有下一个元素,返回true or false 
        public boolean hasNext() {
            return cursor != size;
        }
        //返回元素
        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;   //获取外部类的elementData数组
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }
        //删除元素
        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);  //调用外部类删除方法,删除指定位置的元素
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    //省略了ListItr、SubList两个内部类
}

重要方法解析

上面对整个类的代码做了简单的解析和注释,下面对一些常用的方法做一下重点的解析:

构造方法

ArrayList(int initialCapacity);
ArrayList(); 
ArrayList(Collection<? extends E> c);

上面是ArrayList的三个构造方法,使用三种方法都可以创建一个ArrayList集合,但是它们还是有一些区别,

扫描二维码关注公众号,回复: 99855 查看本文章
  • 使用第一个构造方法, 直接创建了指定大小的Object[]数组来创建集合,
  • 使用第二个构造方法,创建的是一个空的数组,是将一个已经创建好的,使用static final 修饰的数组的引用赋值给了elementData ,此时的长度为零,当添加元素时, elementData = Arrays.copyOf(elementData, newCapacity);完成了elementData新的初始化工作,此时的长度才为10。
  • 第三种构造方法是将集合转化为ArrayList,在底层实现中,先调用集合的toArray()方法,并赋值给elementData , 然后进行类型的判断,是如果类型不是Object[]类型,那么将使用反射生成一个Object[]的数组,并重新赋值给elementData。

扩容检测

数组有个明显的特点就是它的容量是固定不变的,一旦数组被创建则容量则无法改变。所以在往数组中添加指定元素前,首先要考虑的就是其容量是否饱和。

若接下来的添加操作会时数组中的元素超过其容量,则必须对其进行扩容操作。受限于数组容量固定不变的特性,扩容的本质其实就是创建一个容量更大的新数组,再将旧数组的元素复制到新数组当中去。

这里以 ArrayList 的 添加操作为例,来看下 ArrayList 内部数组扩容的过程。

public boolean add(E e) {
	// 关键 -> 添加之前,校验容量
	ensureCapacityInternal(size + 1); 
	
	// 修改 size,并在数组末尾添加指定元素
	elementData[size++] = e;
	return true;
}

可以发现 ArrayList 在进行添加操作前,会检验内部数组容量并选择性地进行数组扩容。在 ArrayList 中,通过私有方法 ensureCapacityInternal 来进行数组的扩容操作。下面来看具体的实现过程:

  • 扩容操作的第一步会去判断当前 ArrayList 内部数组是否为空,为空则将最小容量 minCapacity 设置为 10。
// 内部数组的默认容量
private static final int DEFAULT_CAPACITY = 10;

// 空的内部数组
private static final Object[] EMPTY_ELEMENTDATA = {};

// 关键 -> minCapacity = seize+1,即表示执行完添加操作后,数组中的元素个数 
private void ensureCapacityInternal(int minCapacity) {
	// 判断内部数组是否为空
	if (elementData == EMPTY_ELEMENTDATA) {
		// 设置数组最小容量(>=10)
		minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
	}
	ensureExplicitCapacity(minCapacity);
}
  • 接着判断添加操作会不会导致内部数组的容量饱和。
private void ensureExplicitCapacity(int minCapacity) {
	modCount++;
	
	// 判断结果为 true,则表示接下来的添加操作会导致元素数量超出数组容量
	if (minCapacity - elementData.length > 0){
		// 真正的扩容操作
		grow(minCapacity);
	}
}
  • 数组容量不足,则进行扩容操作,关键的地方有两个:扩容公式、通过从旧数组复制元素到新数组完成扩容操作。
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

private void grow(int minCapacity) {
	
	int oldCapacity = elementData.length;
	
	// 关键-> 容量扩充公式
	int newCapacity = oldCapacity + (oldCapacity >> 1);
	
	// 针对新容量的一系列判断
	if (newCapacity - minCapacity < 0){
		newCapacity = minCapacity;
	}
	if (newCapacity - MAX_ARRAY_SIZE > 0){
		newCapacity = hugeCapacity(minCapacity);
	}
		
	// 关键 -> 复制旧数组元素到新数组中去
	elementData = Arrays.copyOf(elementData, newCapacity);
}

private static int hugeCapacity(int minCapacity) {
	if (minCapacity < 0){
		throw new OutOfMemoryError();
	}
			
	return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
}

关于 ArrayList 扩容操作,整个过程如下图:

添加方法

通过上面的分析,可以了解到针对 ArrayList 增加改查其实本质就是操作数组

ArrayList 的添加操作,也就是往其内部数组添加元素的过程。首先要确保就是数组有足够的空间来存放元素,因此也就有了扩容检测这一步骤。

该操作可分为两种方式:指定位置(添加到数组指定位置)、不指定位置(添加到数组末尾)

  • 不指定位置时,则默认将新元素存放到数组的末尾位置。过程相对简单,这里不再分析。

  • 指定位置时,即将新元素存在到数组的指定位置。若该位置不是数组末尾(即该位置后面还存有元素),则需要将该位置及之后的元素后移一位,以腾出空间来存放新元素。

指定位置(添加到数组指定位置)

public void add(int index, E element) {

	// 校验添加位置,必须在内部数组的容量范围内
	rangeCheckForAdd(index);
	
	// 扩容检测
	ensureCapacityInternal(size + 1);
	
	// 关键 -> 数组内位置为 index 到 (size-1)的元素往后移动一位,这里仍然采用数组复制实现
	System.arraycopy(elementData, index, elementData, index + 1, size - index);
	
	// 腾出新空间添加新元素
	elementData[index] = element;
	
	// 修改数组内的元素数量
	size++;
}

private void rangeCheckForAdd(int index) {
	if (index > size || index < 0){
		// 抛出异常...
	}
}

分析代码,在没有扩容操作的情况下,整个过程如下:

不指定位置(添加到数组末尾) 

public boolean add(E e) {
   ensureCapacityInternal(size + 1);  // Increments modCount!!
   elementData[size++] = e;
   return true;
}

添加方法,首先判断要添加的位置是否超出了数组的容量,如果当前已经没有位置进行存放的时候,ArrayList进行自动的扩容,扩容成功后,将元素放入size位置,并且size完成自加操作

修改方法

修改方法,就是替换指定位置上的元素。原理相对简单,这里直接贴出源码。

public E set(int index, E element) {
	rangeCheck(index);
	
	E oldValue = elementData(index);
	elementData[index] = element;
	return oldValue;
}

删除方法

ArrayList 的删除操作同样存在两种方式:删除指定位置的元素、删除指定元素。后者相较于前者多了一个查询指定元素所处位置的过程。

删除指定位置的元素时,需判断该位置是否在数组末尾,若是则将该位置的元素置空让 GC 自动回收;若不是,则需要将该位置之后的元素前移一位,覆盖掉该元素以到达删除的效果,同时需要清空末尾位置的元素。

public E remove(int index) {
	
	rangeCheck(index);
	modCount++;
	
	// 取得该位置的元素
	E oldValue = elementData(index);

	// 判断该位置是否为数组末尾
	int numMoved = size - index - 1;

	// 若是,则将数组中位置为 idnex+1 到 size -1 元素前移一位
	if (numMoved > 0){
		System.arraycopy(elementData, index + 1, elementData, index, numMoved);
	}
		
	// 关键 -> 清空末尾元素让 GC 生效,并修改数组中的元素个数(实现的十分巧妙)
	elementData[--size] = null; 

	return oldValue;
}

E elementData(int index) {
	return (E) elementData[index];
}

分析代码,若指定位置不在数组末尾时的删除过程如下:

 

删除方法,删除指定位置的元素,首先进行索引合法性的判断,如果索引不合法抛出IndexOutOfBoundsException异常,否则,从elementData的索引index+1的位置开始,都依次向前移动一个位置,并将最后一个位置的索引设置为null, 等待垃圾处理机制回收。

get()方法

public E get(int index) {
   rangeCheck(index);

   return elementData(index);
}

先进行索引合法性判断,如果合法直接返回index位置的元素。

 遍历方式

List<String> list = new ArrayList<>() ;

//第一种
for (int i = 0; i < list.size(); i++) {
    list.get(i);
}
//第二种
for (Iterator iter = list.iterator(); iter.hasNext(); ) {
    iter.next();
}
//第三种
for (Object obj : list)
            ;

//第四种 , 只支持JDK1.8+
list.forEach(
                e->{
                    ;
                }
        );

在集合的数量非常小的情况的,一二三中的遍历速度没有显著的差别,但是随之数量的增加,第一中方式最快,第三种方法第二,第二种第三,第四种最慢。

Arrays.copy()和System.copy()

在源码中多次出现了Arrays.copyOf()和System.copyOf()方法,来看一下这两个方法的区别和联系

//Arrays.copyOf()
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
        @SuppressWarnings("unchecked")
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

//System.copyOf()
public static native void arraycopy(Object src,  int  srcPos,
                                        Object dest, int destPos,
                                        int length);

 通过源码不难看出,Arrays.copyOf()是依靠System.copyOf()方法来实现的。而System.copyOf()的方式被native关键字修饰,这说明它调用的是c++的底层函数,已经不是java的范围。 它们两者的主要是区别是,Arrays.copyOf()不仅仅是拷贝数组中的元素,在拷贝数组元组的时候会生成一个新的数组对象,但是System.copyOf()仅仅是拷贝数组中的元素。

总结

  • ArrayList是基于数组实现的List类。会自动的进行扩容,采用Arrays.copyOf()实现
  • 如果在创建ArrayList时,可以知道ArrayList元素的数量最好指定初始容量,这样可以避免ArrayList的自动多次扩容问题。
  • 与 LinkedList 相比,ArrayList 适用于频繁查询的场景,而不适用于频繁修改的场景; 与 Vector 相比,ArrayList 的所有操作都是非线程安全的。
  • 线程不安全

猜你喜欢

转载自my.oschina.net/90888/blog/1625416