OpenGL学习笔记五——摄像机与坐标变换

五大坐标系统

  • 局部空间(Local Space,或者称为物体空间(Object Space))
    局部坐标是对象中心或者轴心为原点的坐标,位置相对于对象中心或者轴心。

  • 世界空间(World Space)
    世界空间坐标,在世界空间中,有一个坐标系,就如Unity引擎中物体的坐标。

  • 观察空间(View Space,或者称为视觉空间(Eye Space))
    观察空间是以摄像机为原点的坐标系

  • 裁剪空间(Clip Space)
    坐标到达观察空间之后,我们需要将其投影到裁剪坐标。裁剪坐标会被处理至-1.0到1.0的范围内,并判断哪些顶点将会出现在屏幕上。

  • 屏幕空间(Screen Space)
    我们将裁剪坐标变换为屏幕坐标,我们将使用一个叫做视口变换(Viewport Transform)的过程。视口变换将位于-1.0到1.0范围的坐标变换到由glViewport函数所定义的坐标范围内。最后变换出来的坐标将会送到光栅器,将其转化为片段。

各个坐标系统之间的转换关系:

图片来源
在这里插入图片描述

  • 局部空间到世界空间,需要乘上矩阵Model(模型矩阵)
  • 世界空间变换到相机空间,乘上View(观察矩阵)
  • 观察空间变换到裁剪空间乘上Projection(投影矩阵)
    即:
    Vclip=Mprojection⋅Mview⋅Mmodel⋅Vlocal

投影矩阵的两种形式——摄像机的2D和3D类型

关于GLM库,请参考链接

  • 正交投影

使用GLM库函数进行模拟:

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

前两个参数指定了平截头体的左右坐标,第三和第四参数指定了平截头体的底部和顶部。通过这四个参数我们定义了近平面和远平面的大小,然后第五和第六个参数则定义了近平面和远平面的距离。这个投影矩阵会将处于这些x,y,z值范围内的坐标变换为标准化设备坐标。

  • 透视投影

使用GLM库函数进行模拟:

glm::mat4 proj = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);

它的第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果你可以将其设置一个更大的值。第二个参数设置了宽高比,由视口的宽除以高所得。第三和第四个参数设置了平截头体的近和远平面。我们通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。

在这里插入图片描述

实战

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include "stb_image.h"

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>


#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

int main()
{
	//初始化
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);



	// 创建窗口
	GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
	if (window == NULL)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

	// 错误提示信息
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	// 开启深度测试(深度值粗略可视为与相机近平面的距离)
	glEnable(GL_DEPTH_TEST);

	const char *vertexShaderSource =
		"#version 330 core\n"
		"layout(location = 0) in vec3 aPos; \n"
		"layout(location = 1) in vec2 aTexCoord; \n"
		"out vec2 TexCoord; \n"
		"uniform mat4 model; \n"
		"uniform mat4 view; \n"
		"uniform mat4 projection; \n"
		"void main()\n"
		"{\n"
		"gl_Position = projection * view * model * vec4(aPos, 1.0f);\n"
		"TexCoord = vec2(aTexCoord.x, aTexCoord.y);\n"
		"}";

		const char *fragmentShaderSource =
		"#version 330 core\n"
		"out vec4 FragColor;\n"
		"in vec2 TexCoord;\n"
		"uniform sampler2D texture1;\n"
		"uniform sampler2D texture2;\n"
		"void main()\n"
		"{\n"
		"FragColor=mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);\n"
		"}";


	//VertexShader创建顶点着色器
	int vertexShader = glCreateShader(GL_VERTEX_SHADER);
	glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
	glCompileShader(vertexShader);

	//Info获取编译出错信息
	int success;
	char info[512];
	glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(vertexShader, 512, NULL, info);
		std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << info << std::endl;
	}



	//片元着色器
	int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
	glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
	glCompileShader(fragmentShader);
	//编译信息
	glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(fragmentShader, 512, NULL, info);
		std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << info << std::endl;
	}


	//shaderProgramshader程序
	int shaderProgram = glCreateProgram();
	glAttachShader(shaderProgram, vertexShader);
	glAttachShader(shaderProgram, fragmentShader);
	glLinkProgram(shaderProgram);
	glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
	if (!success)
	{
		glGetProgramInfoLog(shaderProgram, 512, NULL, info);
		std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << info << std::endl;
	}


	glDeleteShader(vertexShader);
	glDeleteShader(fragmentShader);
	//一个正方体,
	float vertices[] = {
		-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
		 0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
		 0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
		-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

		-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
		 0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
		 0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
		-0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

		-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
		-0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
		-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

		 0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
		 0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
		 0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
		 0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

		-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
		 0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
		 0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
		 0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

		-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
		 0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
		 0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
		-0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
		-0.5f,  0.5f, -0.5f,  0.0f, 1.0f
	};
	unsigned int VBO, VAO;
	glGenVertexArrays(1, &VAO);
	glGenBuffers(1, &VBO);

	glBindVertexArray(VAO);

	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

	// position attribute
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);
	// texture coord attribute
	glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
	glEnableVertexAttribArray(1);


	// load and create a texture 
	// -------------------------
	unsigned int texture1,texture2;
	// texture 1
	// ---------
	glGenTextures(1, &texture1);
	glBindTexture(GL_TEXTURE_2D, texture1);
	// set the texture wrapping parameters
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
	// set texture filtering parameters
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	// load image, create texture and generate mipmaps
	int width, height, nrChannels;
	stbi_set_flip_vertically_on_load(true); // tell stb_image.h to flip loaded texture's on the y-axis.
	unsigned char *data = stbi_load("1.jpg", &width, &height, &nrChannels, 0);
	if (data)
	{
		glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);
	}
	else
	{
		std::cout << "Failed to load texture" << std::endl;
	}
	stbi_image_free(data);
	
	// texture 2
  // ---------
	glGenTextures(1, &texture2);
	glBindTexture(GL_TEXTURE_2D, texture2);
	// set the texture wrapping parameters
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
	// set texture filtering parameters
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	// load image, create texture and generate mipmaps
	data = stbi_load("1.jpg", &width, &height, &nrChannels, 0);
	if (data)
	{
		// note that the awesomeface.png has transparency and thus an alpha channel, so make sure to tell OpenGL the data type is of GL_RGBA
		glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);
	}
	else
	{
		std::cout << "Failed to load texture" << std::endl;
	}
	stbi_image_free(data);



	glUseProgram(shaderProgram);

	glUniform1i(glGetUniformLocation(shaderProgram, "texture1"), 0);
	glUniform1i(glGetUniformLocation(shaderProgram, "texture2"), 1);

	// render loop
	// -----------
	while (!glfwWindowShouldClose(window))
	{
		// input
		// -----
		processInput(window);

		// render
		// ------
		glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // also clear the depth buffer now!

		// bind textures on corresponding texture units
		glActiveTexture(GL_TEXTURE0);
		glBindTexture(GL_TEXTURE_2D, texture1);

		glActiveTexture(GL_TEXTURE1);
		glBindTexture(GL_TEXTURE_2D, texture2);
		// activate shader
		glUseProgram(shaderProgram);

		// create transformations
		glm::mat4 model = glm::mat4(1.0f); // make sure to initialize matrix to identity matrix first
		glm::mat4 view = glm::mat4(1.0f);
		glm::mat4 projection = glm::mat4(1.0f);
		model = glm::rotate(model, (float)glfwGetTime()*100*sin((float)glfwGetTime()), glm::vec3(0.5f, 1.0f, 0.0f));
		//view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
		//projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
		// retrieve the matrix uniform locations
		unsigned int modelLoc = glGetUniformLocation(shaderProgram, "model");
		unsigned int viewLoc = glGetUniformLocation(shaderProgram, "view");

		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]);
		
		glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "projection"), 1, GL_FALSE, &projection[0][0]);
		// render box
		glBindVertexArray(VAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);


		glfwSwapBuffers(window);
		glfwPollEvents();
	}


	glDeleteVertexArrays(1, &VAO);
	glDeleteBuffers(1, &VBO);


	glfwTerminate();
	return 0;
}


void processInput(GLFWwindow *window)
{
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);
}


void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
	glViewport(0, 0, width, height);
}

运行结果

在这里插入图片描述

图片链接

发布了53 篇原创文章 · 获赞 215 · 访问量 3万+

猜你喜欢

转载自blog.csdn.net/qq_36696486/article/details/104291630