Bert源代码(一)预训练

生成预训练数据

执行代码

python create_pretraining_data.py
–input_file=./sample_text.txt
–output_file=/tmp/tf_examples.tfrecord
–vocab_file=$BERT_BASE_DIR/vocab.txt
–do_lower_case=True
–max_seq_length=128
–max_predictions_per_seq=20
–masked_lm_prob=0.15
–random_seed=12345
–dupe_factor=5

创建训练示例

def create_training_instances(input_files, tokenizer, max_seq_length,
                              dupe_factor, short_seq_prob, masked_lm_prob,
                              max_predictions_per_seq, rng):
  """Create `TrainingInstance`s from raw text."""
  all_documents = [[]]

  # Input file format:
  # (1) One sentence per line. These should ideally be actual sentences, not
  # entire paragraphs or arbitrary spans of text. (Because we use the
  # sentence boundaries for the "next sentence prediction" task).
  # (2) Blank lines between documents. Document boundaries are needed so
  # that the "next sentence prediction" task doesn't span between documents.
  for input_file in input_files:
    with tf.gfile.GFile(input_file, "r") as reader:
      while True:
        line = tokenization.convert_to_unicode(reader.readline())
        if not line:
          break
        line = line.strip()

        # Empty lines are used as document delimiters
        if not line:
          all_documents.append([])
        tokens = tokenizer.tokenize(line) # token化
        if tokens:
          all_documents[-1].append(tokens)

  # Remove empty documents
  all_documents = [x for x in all_documents if x]
  rng.shuffle(all_documents) # 随机shuffle

  vocab_words = list(tokenizer.vocab.keys())
  instances = []
  for _ in range(dupe_factor):
    for document_index in range(len(all_documents)):
      instances.extend(
          create_instances_from_document(
              all_documents, document_index, max_seq_length, short_seq_prob,
              masked_lm_prob, max_predictions_per_seq, vocab_words, rng))

  rng.shuffle(instances)
  return instances

输入文件要求(next sentence prediction):1. 一个句子一行;2. 文档之间用空白行隔空

先使用FullTokenizer进行tokenization

FullTokenizer

由两部分构成:BasicTokenizer和WordpieceTokenizer
其中BasicTokenizer将中文按照字进行切分,英文按照标点符号进行切分。WordpieceTokenizer对BasicTokenizer切分的每个词按照longest-match-first前向最长查找vocabulary,不是开头匹配的词加入##标示,比如"unaffable",最长匹配词为un, ##aff, ##able,输出[“un”, “##aff”, “##able”]。

    for token in whitespace_tokenize(text):
      chars = list(token)
      # 超出词最大输入字符的部分用unk_token替代
      if len(chars) > self.max_input_chars_per_word:
        output_tokens.append(self.unk_token)
        continue

      is_bad = False
      start = 0
      sub_tokens = []
      while start < len(chars):
        end = len(chars)
        cur_substr = None
        # 从end开始查找start:end之间的词是否在vocab中,如果存在则找到,如果不存在则依次将end减1
        while start < end:
          substr = "".join(chars[start:end])
          if start > 0:
            substr = "##" + substr
          if substr in self.vocab:
            cur_substr = substr
            break
          end -= 1
        if cur_substr is None:
          is_bad = True
          break
        sub_tokens.append(cur_substr)
        start = end

      if is_bad:
        output_tokens.append(self.unk_token)
      else:
        output_tokens.extend(sub_tokens)
    return output_tokens

再使用create_instances_from_document为每个文档创建实例

create_instances_from_document

def create_instances_from_document(
    all_documents, document_index, max_seq_length, short_seq_prob,
    masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
  """Creates `TrainingInstance`s for a single document."""
  document = all_documents[document_index]

  # Account for [CLS], [SEP], [SEP]
  max_num_tokens = max_seq_length - 3

  # We *usually* want to fill up the entire sequence since we are padding
  # to `max_seq_length` anyways, so short sequences are generally wasted
  # computation. However, we *sometimes*
  # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
  # sequences to minimize the mismatch between pre-training and fine-tuning.
  # The `target_seq_length` is just a rough target however, whereas
  # `max_seq_length` is a hard limit.
  target_seq_length = max_num_tokens
  if rng.random() < short_seq_prob:
    target_seq_length = rng.randint(2, max_num_tokens)

  # We DON'T just concatenate all of the tokens from a document into a long
  # sequence and choose an arbitrary split point because this would make the
  # next sentence prediction task too easy. Instead, we split the input into
  # segments "A" and "B" based on the actual "sentences" provided by the user
  # input.
  # 创新点1:下一句预测
  instances = []
  current_chunk = []
  current_length = 0
  i = 0
  while i < len(document):
    segment = document[i]
    current_chunk.append(segment)
    current_length += len(segment)
    if i == len(document) - 1 or current_length >= target_seq_length:
      if current_chunk:
        # `a_end` is how many segments from `current_chunk` go into the `A`
        # (first) sentence.
        # 拆分A、B句作next sentence prediction
        a_end = 1
        # 随机采样当前句a_end
        if len(current_chunk) >= 2:
          a_end = rng.randint(1, len(current_chunk) - 1)

        tokens_a = []
        for j in range(a_end):
          tokens_a.extend(current_chunk[j])

        tokens_b = []
        # Random next
        is_random_next = False
        # 如果文档只有一个segment一句话,则随机从其他文档采样得到下一句。
        # 50%几率随机从其他文档采样(随机长度句子)得到下一句,50%几率使用真实的下一句作为下一句
        if len(current_chunk) == 1 or rng.random() < 0.5:
          is_random_next = True
          target_b_length = target_seq_length - len(tokens_a)

          # This should rarely go for more than one iteration for large
          # corpora. However, just to be careful, we try to make sure that
          # the random document is not the same as the document
          # we're processing.
          # 为了避免random的文档和原文档一样
          for _ in range(10):
            random_document_index = rng.randint(0, len(all_documents) - 1)
            if random_document_index != document_index:
              break

          random_document = all_documents[random_document_index]
          random_start = rng.randint(0, len(random_document) - 1)
          # 随机产生采样的开始点
          for j in range(random_start, len(random_document)):
            tokens_b.extend(random_document[j])
            if len(tokens_b) >= target_b_length:
              break
          # We didn't actually use these segments so we "put them back" so
          # they don't go to waste.
          num_unused_segments = len(current_chunk) - a_end
          i -= num_unused_segments
        # Actual next
        else:
          is_random_next = False
          for j in range(a_end, len(current_chunk)):
            tokens_b.extend(current_chunk[j])
        # 截断使其满足max_num_tokens
        truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)

        assert len(tokens_a) >= 1
        assert len(tokens_b) >= 1

		# 生成 [[CLS]+第一句+[SEP]+下一句+[SEP]]
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
          tokens.append(token)
          segment_ids.append(0)

        tokens.append("[SEP]")
        segment_ids.append(0)

        for token in tokens_b:
          tokens.append(token)
          segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)
		# 创新点2:随机掩蔽
        (tokens, masked_lm_positions,
         masked_lm_labels) = create_masked_lm_predictions(
             tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
        instance = TrainingInstance(
            tokens=tokens,
            segment_ids=segment_ids,
            is_random_next=is_random_next,
            masked_lm_positions=masked_lm_positions,
            masked_lm_labels=masked_lm_labels)
        instances.append(instance)
      current_chunk = []
      current_length = 0
    i += 1

  return instances
def create_masked_lm_predictions(tokens, masked_lm_prob,
                                 max_predictions_per_seq, vocab_words, rng):
  """Creates the predictions for the masked LM objective."""

  cand_indexes = []
  for (i, token) in enumerate(tokens):
    if token == "[CLS]" or token == "[SEP]":
      continue
    cand_indexes.append(i)
  rng.shuffle(cand_indexes) # 随机挑选词进行掩蔽
  output_tokens = list(tokens)

  # 随机掩蔽的词数量masked_lm_prob(15%)
  num_to_predict = min(max_predictions_per_seq,
                       max(1, int(round(len(tokens) * masked_lm_prob))))

  masked_lms = []
  covered_indexes = set()
  for index in cand_indexes:
    if len(masked_lms) >= num_to_predict:
      break
    if index in covered_indexes:
      continue
    covered_indexes.add(index)

    masked_token = None
    # 80% of the time, replace with [MASK]
    # 80%替换为[MASK]
    if rng.random() < 0.8:
      masked_token = "[MASK]"
    else:
      # 10% of the time, keep original
      # 10%保持原样(0.2 x 0.5)
      if rng.random() < 0.5:
        masked_token = tokens[index]
      # 10% of the time, replace with random word
      # 10%随机使用字典库里面的词进行替换(可能是原样的词)
      else:
        masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]

    output_tokens[index] = masked_token

    masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))

  masked_lms = sorted(masked_lms, key=lambda x: x.index)
  # 随机掩蔽的词的位置和真实的label
  masked_lm_positions = []
  masked_lm_labels = []
  for p in masked_lms:
    masked_lm_positions.append(p.index)
    masked_lm_labels.append(p.label)

  return (output_tokens, masked_lm_positions, masked_lm_labels)

创新点有:

  1. Next Sentence Prediction
    通过将句子拆分成A(当前句)、B句(下一句),基于A句选择B句的策略为:50%几率A、B句是真实的连续句,50%几率A、B句是真实的不连续句。

  2. Masked LM
    使用随机15%的token词作mask,mask的策略为 :
    (1) 80%替换为[MASK]
    (2) 10%保持原词
    (3) 10%替换为随机词
    这样mask策略的目的:
    作者认为: Intuitively, it is reasonable to believe that a deep bidirectional model is strictly more powerful than either a left-to-right model or the shallow concatenation of a left-toright and a right-to-left model. Unfortunately, standard conditional language models can only be trained left-to-right or right-to-left, since bidirectional conditioning would allow each word to indirectly “see itself”, and the model could trivially predict the target word in a multi-layered context.
    传统的bidirectional不够deep bidirectional。作者提出了Masked LM。随机选择15%的token来进行mask。选择上述MASK策略的原因:

  • If we used [MASK] 100% of the time the model wouldn’t necessarily produce good token representations for non-masked words. The non-masked tokens were still used for context, but the model was optimized for predicting masked words.
    如果100%[MASK]那么模型预测masked的词,可能对于non-masked的词不会产生好的表示。另外,考虑到如果把一些词mask起来,未来的fine tuning过程中模型有可能没见过这些词(比如这些词总是被替换成[MASK],那么最终模型就不知道这些词)
  • If we used [MASK] 90% of the time and random words 10% of the time, this would teach the model that the observed word is never correct.
    如果90%[MASK]和10%随机,可能会告诉模型观察词永远不对,学不出来。
  • If we used [MASK] 90% of the time and kept the same word 10% of the time, then the model could just trivially copy the non-contextual embedding.
    如果 90%[MASK]和10%保持原词,那么模型可能只会拷贝non-contextual的词潜入,认为[MASK]就是target词。加入随机词,模型会努力学习随机词,在prediction阶段再发现和target不符。加入随机词会让模型努力学习上下文,而不是单纯地只学习当前词。

随机的词带来的负面影响可以忽略不计,因为15%*10%=1.5%的概率很小。

pretrain的时候其实就是对masked的这些位置计算masked_lm的loss。

具体实现见代码里面的注释。

生成预训练数据tfrecord

def write_instance_to_example_files(instances, tokenizer, max_seq_length,
                                    max_predictions_per_seq, output_files):
  """Create TF example files from `TrainingInstance`s."""
  writers = []
  for output_file in output_files:
    writers.append(tf.python_io.TFRecordWriter(output_file))

  writer_index = 0

  total_written = 0
  for (inst_index, instance) in enumerate(instances):
    input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
    input_mask = [1] * len(input_ids)
    segment_ids = list(instance.segment_ids)
    assert len(input_ids) <= max_seq_length

    while len(input_ids) < max_seq_length:
      input_ids.append(0)
      input_mask.append(0)
      segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    masked_lm_positions = list(instance.masked_lm_positions)
    masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
    masked_lm_weights = [1.0] * len(masked_lm_ids)
	# 对于不足max_predictions_per_seq的部分position, ids, weights补零,以供train/eval使用
    while len(masked_lm_positions) < max_predictions_per_seq:
      masked_lm_positions.append(0)
      masked_lm_ids.append(0)
      masked_lm_weights.append(0.0)

    next_sentence_label = 1 if instance.is_random_next else 0

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(input_ids)
    features["input_mask"] = create_int_feature(input_mask)
    features["segment_ids"] = create_int_feature(segment_ids)
    features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
    features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
    features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
    features["next_sentence_labels"] = create_int_feature([next_sentence_label])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))

    writers[writer_index].write(tf_example.SerializeToString())
    writer_index = (writer_index + 1) % len(writers)

    total_written += 1

    if inst_index < 20:
      tf.logging.info("*** Example ***")
      tf.logging.info("tokens: %s" % " ".join(
          [tokenization.printable_text(x) for x in instance.tokens]))

      for feature_name in features.keys():
        feature = features[feature_name]
        values = []
        if feature.int64_list.value:
          values = feature.int64_list.value
        elif feature.float_list.value:
          values = feature.float_list.value
        tf.logging.info(
            "%s: %s" % (feature_name, " ".join([str(x) for x in values])))

  for writer in writers:
    writer.close()

  tf.logging.info("Wrote %d total instances", total_written)

预训练

python run_pretraining.py
–input_file=/tmp/tf_examples.tfrecord
–output_dir=/tmp/pretraining_output
–do_train=True
–do_eval=True
–bert_config_file=KaTeX parse error: Undefined control sequence: \ at position 32: …rt_config.json \̲ ̲ --init_checkp…BERT_BASE_DIR/bert_model.ckpt
–train_batch_size=32
–max_seq_length=128
–max_predictions_per_seq=20
–num_train_steps=20
–num_warmup_steps=10
–learning_rate=2e-5

def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  if not FLAGS.do_train and not FLAGS.do_eval:
    raise ValueError("At least one of `do_train` or `do_eval` must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  tf.gfile.MakeDirs(FLAGS.output_dir)

  input_files = []
  for input_pattern in FLAGS.input_file.split(","):
    input_files.extend(tf.gfile.Glob(input_pattern))

  tf.logging.info("*** Input Files ***")
  for input_file in input_files:
    tf.logging.info("  %s" % input_file)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  model_fn = model_fn_builder(
      bert_config=bert_config,
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=FLAGS.num_train_steps,
      num_warmup_steps=FLAGS.num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size)

  if FLAGS.do_train:
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    train_input_fn = input_fn_builder(
        input_files=input_files,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=True)
    estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)

  if FLAGS.do_eval:
    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    eval_input_fn = input_fn_builder(
        input_files=input_files,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=False)

    result = estimator.evaluate(
        input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
      tf.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

代码执行如下步骤:

定义RunConfig的config

定义TPUEstimatorSpec生成model_fn

model_fn的代码及注释:

def model_fn_builder(bert_config, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    masked_lm_positions = features["masked_lm_positions"]
    masked_lm_ids = features["masked_lm_ids"]
    masked_lm_weights = features["masked_lm_weights"]
    next_sentence_labels = features["next_sentence_labels"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)
	
	# Bert模型,下一章再详细介绍
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

	# get_sequence_output:最后一层隐藏层[batch_size, seq_length, hidden_size]
	# get_embedding_table:embedding层
	# get_pooled_output: 最后一层隐藏层第一个token即[CLS]通过一个dense层的输出[batch_size, hidden_size],该token包含了整个句子的信息,适用于segment-level的分类。
    (masked_lm_loss,
     masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
         bert_config, model.get_sequence_output(), model.get_embedding_table(),
         masked_lm_positions, masked_lm_ids, masked_lm_weights)

    (next_sentence_loss, next_sentence_example_loss,
     next_sentence_log_probs) = get_next_sentence_output(
         bert_config, model.get_pooled_output(), next_sentence_labels)

    total_loss = masked_lm_loss + next_sentence_loss

    tvars = tf.trainable_variables()

    initialized_variable_names = {}
    scaffold_fn = None
    if init_checkpoint:
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
      if use_tpu:

        def tpu_scaffold():
          tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
          return tf.train.Scaffold()

        scaffold_fn = tpu_scaffold
      else:
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      # 使用AdamWeightDecayOptimizer最优化
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op,
          scaffold_fn=scaffold_fn)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                    masked_lm_weights, next_sentence_example_loss,
                    next_sentence_log_probs, next_sentence_labels):
        """Computes the loss and accuracy of the model."""
        # 计算masked_lm和next_sentence预测准确度和平均损失
        masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
                                         [-1, masked_lm_log_probs.shape[-1]])
        masked_lm_predictions = tf.argmax(
            masked_lm_log_probs, axis=-1, output_type=tf.int32)
        masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
        masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
        masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
        masked_lm_accuracy = tf.metrics.accuracy(
            labels=masked_lm_ids,
            predictions=masked_lm_predictions,
            weights=masked_lm_weights)
        masked_lm_mean_loss = tf.metrics.mean(
            values=masked_lm_example_loss, weights=masked_lm_weights)

        next_sentence_log_probs = tf.reshape(
            next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
        next_sentence_predictions = tf.argmax(
            next_sentence_log_probs, axis=-1, output_type=tf.int32)
        next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
        next_sentence_accuracy = tf.metrics.accuracy(
            labels=next_sentence_labels, predictions=next_sentence_predictions)
        next_sentence_mean_loss = tf.metrics.mean(
            values=next_sentence_example_loss)

        return {
            "masked_lm_accuracy": masked_lm_accuracy,
            "masked_lm_loss": masked_lm_mean_loss,
            "next_sentence_accuracy": next_sentence_accuracy,
            "next_sentence_loss": next_sentence_mean_loss,
        }

      eval_metrics = (metric_fn, [
          masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
          masked_lm_weights, next_sentence_example_loss,
          next_sentence_log_probs, next_sentence_labels
      ])
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics,
          scaffold_fn=scaffold_fn)
    else:
      raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

    return output_spec

  return model_fn
 def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
                         label_ids, label_weights):
  """Get loss and log probs for the masked LM."""
  # 将position进行flatten,由[batch_size, max_predictions_per_seq]转换成[batch_size * max_predictions_per_seq];
  # 然后再从input_tensor中查找到positions对应位置的tensor,[batch_size * max_predictions_per_seq, hidden_size]
  input_tensor = gather_indexes(input_tensor, positions)
  # 非线性转换,加入LN
  with tf.variable_scope("cls/predictions"):
    # We apply one more non-linear transformation before the output layer.
    # This matrix is not used after pre-training.
    with tf.variable_scope("transform"):
      input_tensor = tf.layers.dense(
          input_tensor,
          units=bert_config.hidden_size, # 隐藏层大小
          activation=modeling.get_activation(bert_config.hidden_act), # 激活函数
          kernel_initializer=modeling.create_initializer(
              bert_config.initializer_range)) # 截断正太分布标准差
      input_tensor = modeling.layer_norm(input_tensor)

    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    output_bias = tf.get_variable(
        "output_bias",
        shape=[bert_config.vocab_size],
        initializer=tf.zeros_initializer())
    # softmax(wx+b)
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
	# 将label_ids进行flatten,[batch_size * max_predictions_per_seq]
    label_ids = tf.reshape(label_ids, [-1])
    label_weights = tf.reshape(label_weights, [-1])
	# 将label_ids进行onehot。[batch_size * max_predictions_per_seq, vocab_size]
    one_hot_labels = tf.one_hot(
        label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

    # The `positions` tensor might be zero-padded (if the sequence is too
    # short to have the maximum number of predictions). The `label_weights`
    # tensor has a value of 1.0 for every real prediction and 0.0 for the
    # padding predictions.
    # 每个sample的softmax损失
    per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
    numerator = tf.reduce_sum(label_weights * per_example_loss)
    denominator = tf.reduce_sum(label_weights) + 1e-5
    # 用masked_lm_weights来对每个sample的loss加权求平均损失
    # 对于position小于max_predictions_per_seq的masked_lm_weights权重填充为0,其余为1
    loss = numerator / denominator
  return (loss, per_example_loss, log_probs)
def get_next_sentence_output(bert_config, input_tensor, labels):
  """Get loss and log probs for the next sentence prediction."""
  # Simple binary classification. Note that 0 is "next sentence" and 1 is
  # "random sentence". This weight matrix is not used after pre-training.
  with tf.variable_scope("cls/seq_relationship"):
    output_weights = tf.get_variable(
        "output_weights",
        shape=[2, bert_config.hidden_size],
        initializer=modeling.create_initializer(bert_config.initializer_range))
    output_bias = tf.get_variable(
        "output_bias", shape=[2], initializer=tf.zeros_initializer())
	# softmax(wx+b), 使用bert的pooled_output作为输入来作next sentence分类
	# (0: real next sentence, 1: random sentence)
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, per_example_loss, log_probs)

主要定义masked_lm和next_sentence两个任务的loss,bert模型 ,adam最优化以及相应的metric指标。

定义TPUEstimator,将model_fn和config传入生成estimator

注:TPUEstimator当TPU不可见的时候,会自动fall back到CPU或者GPU

生成train_input_fn和eval_input_fn,以供训练estimator.train和评估estimator.evaluate

def input_fn_builder(input_files,
                     max_seq_length,
                     max_predictions_per_seq,
                     is_training,
                     num_cpu_threads=4):
  """Creates an `input_fn` closure to be passed to TPUEstimator."""

  def input_fn(params):
    """The actual input function."""
    batch_size = params["batch_size"]
	# 
    name_to_features = {
        "input_ids":
            tf.FixedLenFeature([max_seq_length], tf.int64),
        "input_mask":
            tf.FixedLenFeature([max_seq_length], tf.int64),
        "segment_ids":
            tf.FixedLenFeature([max_seq_length], tf.int64),
        "masked_lm_positions":
            tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
        "masked_lm_ids":
            tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
        "masked_lm_weights":
            tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
        "next_sentence_labels":
            tf.FixedLenFeature([1], tf.int64),
    }

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    if is_training:
      d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
      d = d.repeat()
      d = d.shuffle(buffer_size=len(input_files))

      # `cycle_length` is the number of parallel files that get read.
      cycle_length = min(num_cpu_threads, len(input_files))

      # `sloppy` mode means that the interleaving is not exact. This adds
      # even more randomness to the training pipeline.
      # 并行化处理
      d = d.apply(
          tf.contrib.data.parallel_interleave(
              tf.data.TFRecordDataset,
              sloppy=is_training,
              cycle_length=cycle_length))
      d = d.shuffle(buffer_size=100)
    else:
      d = tf.data.TFRecordDataset(input_files)
      # Since we evaluate for a fixed number of steps we don't want to encounter
      # out-of-range exceptions.
      d = d.repeat()

    # We must `drop_remainder` on training because the TPU requires fixed
    # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
    # and we *don't* want to drop the remainder, otherwise we wont cover
    # every sample.
    d = d.apply(
        tf.contrib.data.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            num_parallel_batches=num_cpu_threads,
            drop_remainder=True))
    return d

  return input_fn
发布了10 篇原创文章 · 获赞 0 · 访问量 281

猜你喜欢

转载自blog.csdn.net/eyeshere/article/details/102419250