HDU 6063 RXD and math(莫比乌斯反演+打表)

Description:

RXD is a good mathematician.
One day he wants to calculate:

i n k μ 2 ( i ) × n k i ∑_{i}^{n^k}μ^2(i)×⌊\sqrt{\frac{n^k}{i}}⌋

output the answer module 1 0 9 + 7 10^9+7 .
1 n , k 1 0 18 1≤n,k≤10^{18}

μ ( n ) = 1 ( n = 1 ) μ(n)=1(n=1)

μ ( n ) = ( 1 ) k ( n = p 1 p 2 p k ) μ(n)=(−1) \quad k(n=p_{1}p_{2}…p_{k})

μ ( n ) = 0 ( o t h e r w i s e ) μ(n)=0(otherwise)

p 1 , p 2 , p 3 p k p_{1},p_{2},p_{3}…p_{k} are different prime numbers

Input

There are several test cases, please keep reading until EOF.
There are exact 10000 10000 cases.
For each test case, there are 2 2 numbers n , k . n,k.

Output

For each test case, output “Case #x: y”, which means the test case number and the answer.

Sample Input

10 10

Sample Output

Case #1: 999999937

题意

就是按照上面给出的式子把每一项的莫比乌斯函数值带进去求累加和。
没推出来,打表找了几项发现了规律。

打表代码:

int n, k;
const int MAXN = 1000000;
bool check[MAXN + 10];
int prime[MAXN + 10];
int mu[MAXN + 10];
void Moblus()
{
    memset(check, false, sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for (int i = 2; i <= MAXN; i++)
    {
        if (!check[i])
        {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; j++)
        {
            if (i * prime[j] > MAXN)
                break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}

int main()
{
    Moblus();
    while (~sdd(n, k))
    {

        ll ans = 0;
        ll tmp = qpow(n, k, MOD);
        rep(i, 1, tmp)
        {

            ans += mu[i] * mu[i] * sqrt(tmp / i);
            ans %= MOD;
        }
        pld(ans);
    }
    return 0;
}

AC代码:

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
    int ret = 0, sgn = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            sgn = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    }
    return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
    if (a > 9)
        Out(a / 10);
    putchar(a % 10 + '0');
}

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(ll a, ll b, ll mod)
{
    if (a >= mod)
        a = a % mod + mod;
    ll ans = 1;
    while (b)
    {
        if (b & 1)
        {
            ans = ans * a;
            if (ans >= mod)
                ans = ans % mod + mod;
        }
        a *= a;
        if (a >= mod)
            a = a % mod + mod;
        b >>= 1;
    }
    return ans;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a, p - 2, p);
}

///扩展欧几里得
int exgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int g = exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;
    return g;
}

///使用ecgcd求a的逆元x
int mod_reverse(int a, int p)
{
    int d, x, y;
    d = exgcd(a, p, x, y);
    if (d == 1)
        return (x % p + p) % p;
    else
        return -1;
}

///中国剩余定理模板0
ll china(int a[], int b[], int n) //a[]为除数,b[]为余数
{
    int M = 1, y, x = 0;
    for (int i = 0; i < n; ++i) //算出它们累乘的结果
        M *= a[i];
    for (int i = 0; i < n; ++i)
    {
        int w = M / a[i];
        int tx = 0;
        int t = exgcd(w, a[i], tx, y); //计算逆元
        x = (x + w * (b[i] / t) * x) % M;
    }
    return (x + M) % M;
}

ll n, k;
ll ans;
int cas = 1;
int main()
{
    while (~sldd(n, k))
    {
        ans = qpow(n, k, MOD) % MOD;
        printf("Case #%d: ", cas++);
        pld(ans);
    }
    return 0;
}

发布了631 篇原创文章 · 获赞 399 · 访问量 20万+

猜你喜欢

转载自blog.csdn.net/qq_43627087/article/details/104146146