Redis之字典(Map)

1. 数据结构

/*
 * 哈希表
 */
typedef struct dictht 
{
    // 哈希表数组
    dictEntry **table;
    // 哈希表大小
    unsigned long size;
    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;
    // 该哈希表已有节点的数量
    unsigned long used;
} dictht;
/*
 * 哈希表节点
 */
typedef struct dictEntry 
{    
    // 键
    void *key;
    // 值
    union 
    {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;
    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;
} dictEntry;
/*
 * 字典
 */
typedef struct dict 
{
    // 类型特定函数
    dictType *type;

    // 私有数据
    void *privdata;

    // 哈希表
    // 一般情况下,只使用ht[0]哈希表,ht[1]哈希表只会在rehash时使用
    dictht ht[2];

    // rehash 索引
    // 记录rehash的进度,当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */

    // 目前正在运行的安全迭代器的数量
    int iterators; /* number of iterators currently running */

} dict;
/*
 * 字典类型特定函数
 *  
 * 保存了一簇用于操作特定类型的键值对的函数,Redis会为用途不同的字典设置不同类型的特定函数
 */
typedef struct dictType 
{
    // 计算哈希值的函数
    unsigned int (*hashFunction)(const void *key);

    // 复制键的函数
    void *(*keyDup)(void *privdata, const void *key);

    // 复制值的函数
    void *(*valDup)(void *privdata, const void *obj);

    // 对比键的函数
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);

    // 销毁键的函数
    void (*keyDestructor)(void *privdata, void *key);
    
    // 销毁值的函数
    void (*valDestructor)(void *privdata, void *obj);

} dictType;

2. 哈希算法

//计算key的hash值
hash = dict->type->hashFunction(key);
//计算索引
index = hash & dict->ht[x].sizemask;

Redis使用的是MurmurHash2算法。

3. 解决键冲突

链地址法+头插法

4. rehash

(1)为字典的 ht[1] 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht[0] 当前包含的键值对数量 (也即是 ht[0].used 属性的值):
1. 如果执行的是扩展操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used * 2 的 2^n (2 的 n 次方幂);
2. 如果执行的是收缩操作, 那么 ht[1] 的大小为第一个大于等于 ht[0].used 的 2^n 。
(2) 将保存在 ht[0] 中的所有键值对 rehash 到 ht[1] 上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到 ht[1] 哈希表的指定位置上。
(3) 当 ht[0] 包含的所有键值对都迁移到了 ht[1] 之后 (ht[0] 变为空表), 释放 ht[0] , 将 ht[1] 设置为 ht[0] , 并在 ht[1] 新创建一个空白哈希表, 为下一次 rehash 做准备。

hash表的扩展与收缩

当以下条件中的任意一个被满足时, 程序会自动开始对哈希表执行扩展操作:

服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 1 ;
服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 5 ;
其中哈希表的负载因子可以通过公式:

负载因子 = 哈希表已保存节点数量 / 哈希表大小
load_factor = ht[0].used / ht[0].size

计算得出。

比如说, 对于一个大小为 4 , 包含 4 个键值对的哈希表来说, 这个哈希表的负载因子为:

load_factor = 4 / 4 = 1
又比如说, 对于一个大小为 512 , 包含 256 个键值对的哈希表来说, 这个哈希表的负载因子为:

load_factor = 256 / 512 = 0.5
根据 BGSAVE 命令或 BGREWRITEAOF 命令是否正在执行, 服务器执行扩展操作所需的负载因子并不相同, 这是因为在执行 BGSAVE 命令或 BGREWRITEAOF 命令的过程中, Redis 需要创建当前服务器进程的子进程, 而大多数操作系统都采用写时复制(copy-on-write)技术来优化子进程的使用效率, 所以在子进程存在期间, 服务器会提高执行扩展操作所需的负载因子, 从而尽可能地避免在子进程存在期间进行哈希表扩展操作, 这可以避免不必要的内存写入操作, 最大限度地节约内存。

另一方面, 当哈希表的负载因子小于 0.1 时, 程序自动开始对哈希表执行收缩操作。

5. 渐进式rehash

以下是哈希表渐进式 rehash 的详细步骤:

  1. 为 ht[1] 分配空间, 让字典同时持有 ht[0] 和 ht[1] 两个哈希表。
  2. 在字典中维持一个索引计数器变量 rehashidx , 并将它的值设置为 0 , 表示 rehash 工作正式开始。
  3. 在 rehash 进行期间, 每次对字典执行添加、删除、查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将 ht[0] 哈希表在 rehashidx 索引上的所有键值对 rehash 到 ht[1] , 当 rehash 工作完成之后, 程序将 rehashidx 属性的值增一。
  4. 随着字典操作的不断执行, 最终在某个时间点上, ht[0] 的所有键值对都会被 rehash 至 ht[1] , 这时程序将 rehashidx 属性的值设为 -1 , 表示 rehash 操作已完成。

6. 渐进式 rehash 执行期间的哈希表操作

因为在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0] 和 ht[1] 两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 ht[0] 里面进行查找, 如果没找到的话, 就会继续到 ht[1] 里面进行查找, 诸如此类。

另外, 在渐进式 rehash 执行期间, 新添加到字典的键值对一律会被保存到 ht[1] 里面, 而 ht[0] 则不再进行任何添加操作: 这一措施保证了 ht[0] 包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。

发布了306 篇原创文章 · 获赞 46 · 访问量 29万+

猜你喜欢

转载自blog.csdn.net/kaikai_sk/article/details/89555626
今日推荐