信号处理 —— 微分到差分的转换


在这里插入图片描述

对于连续函数 f ( t ) f(t) ,采样后为 f ( k T ) f(kT) ,将其简写为 f ( k ) f(k)

向前差分

  • 一阶向前差分: Δ f ( k ) = f ( k + 1 ) f ( k ) \Delta f(k)=f(k+1)-f(k)
  • 二阶向前差分: Δ 2 f ( k ) = Δ f ( k + 1 ) Δ f ( k ) = f ( k + 2 ) 2 f ( k + 1 ) + f ( k ) \begin{aligned} \Delta^{2} f(k) &=\Delta f(k+1)-\Delta f(k) =f(k+2)-2 f(k+1)+f(k) \end{aligned}
  • n阶向前差分: Δ n f ( k ) = Δ n 1 f ( k + 1 ) Δ n 1 f ( k ) \Delta^{n} f(k)=\Delta^{n-1} f(k+1)-\Delta^{n-1} f(k)

向后差分

  • 一阶向后差分: f ( k ) = f ( k ) f ( k 1 ) \nabla f(k)=f(k)-f(k-1)
  • 二阶向后差分: 2 f ( k ) = [ Δ f ( k ) ] = f ( k ) 2 f ( k 1 ) + f ( k 2 ) \nabla^{2} f(k)=\nabla[\Delta f(k)]=f(k)-2 f(k-1)+f(k-2)
  • n阶向后差分: n f ( k ) = n 1 f ( k ) n 1 f ( k 1 ) \nabla^{n} f(k)=\nabla^{n-1} f(k)-\nabla^{n-1} f(k-1)

例子

假设连续系统微分方程为:
a n d n y d t n + a n 1 d n 1 y d t n 1 + + a 1 d y d t + a 0 y = b m d m x d t m + b m 1 d m 1 x d t m 1 + + b 1 d x d t + b 0 x a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1} \frac{d y}{d t}+a_{0} y=b_{m} \frac{d^{m} x}{d t^{m}}+b_{m-1} \frac{d^{m-1} x}{d t^{m-1}}+\cdots+b_{1} \frac{d x}{d t}+b_{0} x
则两边同时除以 a 0 a_{0} 得:
a n a 0 d n y d t n + a n 1 a 0 d n 1 y d t n 1 + + a 1 a 0 d y d t + y = b m a 0 d m x d t m + b m 1 a 0 d m 1 x d t m 1 + + b 1 a 0 d x d t + b 0 a 0 x \frac{a_{n}}{a_{0}} \frac{d^{n} y}{d t^{n}}+\frac{a_{n-1}}{a_{0}} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+\frac{a_{1}}{a_{0}} \frac{d y}{d t}+y=\frac{b_{m}}{a_{0}} \frac{d^{m} x}{d t^{m}}+\frac{b_{m-1}}{a_{0}} \frac{d^{m-1} x}{d t^{m-1}}+\cdots+\frac{b_{1}}{a_{0}} \frac{d x}{d t}+\frac{b_{0}}{a_{0}} x
a n d n y d t n + a n 1 d n 1 y d t n 1 + + a 1 d y d t + y = b m d m x d t m + b m 1 d m 1 x d t m 1 + + b 1 d x d t + b 0 x a_{n}^{\prime} \frac{d^{n} y}{d t^{n}}+a_{n-1}^{\prime} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1}^{\prime} \frac{d y}{d t}+y=b_{m}^{\prime} \frac{d^{m} x}{d t^{m}}+b_{m-1}^{\prime} \frac{d^{m-1} x}{d t^{m-1}}+\cdots+b_{1}^{\prime} \frac{d x}{d t}+b_{0}^{\prime} x
w h e r e where , a k = a k a 0 ( k = 1 n ) , b k = b k a 0 ( k = 0 n ) a_{k}^{\prime}=\frac{a_{k}}{a_{0}}(k=1 \ldots n), \quad b_{\mathrm{k}}^{\prime}=\frac{b_{k}}{a_{0}}(k=0 \ldots n)
使用向后差分的形式,则等式左边的微分项转为差分项为:
y = y ( n ) = y ( k ) d y d t = y ( n ) y ( n 1 ) T = y ( k 1 ) d 2 y d t 2 = y ( n ) y ( n 1 ) T y ( n 1 ) y ( n 2 ) T = y ( n ) 2 y ( n 1 ) + y ( n 2 ) T 2 = y ( k 2 ) d n y d t n = y ( k n ) \begin{array}{l}{y=y(n)=y(k)} \\\\ {\frac{d y}{d t}=\frac{y(n)-y(n-1)}{T}=y(k-1)} \\\\ {\frac{d^{2} y}{d t^{2}}=\frac{y(n)-y(n-1)}{T}-\frac{y(n-1)-y(n-2)}{T}=\frac{y(n)-2 y(n-1)+y(n-2)}{T^{2}}=y(k-2)} \\\\ {\cdots} \\\\ {\frac{d^{n} y}{d t^{n}}=y(k-n)}\end{array}
同理,等式右边的微分项转为差分项为:
x = x ( n ) = u ( k ) d x d t = x ( n ) x ( n 1 ) T = u ( k 1 ) d 2 x d t 2 = x ( n ) 2 x ( n 1 ) + x ( n 2 ) T 2 = u ( k 2 ) d m x d t m = u ( k m ) \begin{array}{l}{x=x(n)=u(k)} \\\\ {\frac{d x}{d t}=\frac{x(n)-x(n-1)}{T}=u(k-1)} \\\\ {\frac{d^{2} x}{d t^{2}}=\frac{x(n)-2 x(n-1)+x(n-2)}{T^{2}}=u(k-2)} \\\\ {\cdots} \\\\ {\frac{d^{m} x}{d t^{m}}=u(k-m)}\end{array}
将上述所得差分项替换原式中的微分项得:
a n y ( k n ) + + a 1 y ( k 1 ) + y ( k ) = b m x ( k m ) + + b 1 x ( k 1 ) + b 0 x ( k ) + ξ ( k ) a_{n}^{\prime} y(k-n)+\cdots+a_{1}^{\prime} y(k-1)+y(k)=b_{m}^{\prime} x(k-m)+\cdots+b_{1}^{\prime} x(k-1)+b_{0}^{\prime} x(k)+\xi(k)
w h e r e where a k = a k a 0 ( k = 1 n ) , b k = b k a 0 ( k = 0 n ) ξ ( k ) a_{k}^{\prime}=\frac{a_{k}}{a_{0}}(k=1 \ldots n), \quad b_{\mathrm{k}}^{\prime}=\frac{b_{k}}{a_{0}}(k=0 \ldots n) ,\xi(k)为由于差分运算导致的误差项


关于微分方程与差分方程的联系与区别可参考博文《微分方程和差分方程的区别与联系》

发布了78 篇原创文章 · 获赞 57 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/weixin_43455581/article/details/103293184