泰勒(Taylor)级数

泰勒级数是用无限项的连加式来表示一个函数。设 f ( x ) f(x) x 0 x_0 处具有 n n 阶导数,试找出一个关于 ( x x 0 ) (x-x_0) n n 次多项式
p n ( x ) = a 0 + a 1 ( x x 0 ) + a 2 ( x x 0 ) 2 + + a n ( x x 0 ) n p_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n

来近似表达 f ( x ) f(x) ,要求使得 p n ( x ) p_n(x) f ( x ) f(x) 之差是当 x x 0 x\rightarrow x_0 时比 ( x x 0 ) n (x-x_0)^n 高阶的无穷小。
p n ( x ) p_n(x) x 0 x_0 处的函数值及它的直到 n n 阶导数在 x 0 x_0 处的值依次与 f ( x 0 ) , f ( x 0 ) , , f ( n ) ( x 0 ) f(x_0), f'(x_0), \cdots, f^{(n)}(x_0) 相等,即满足
p n ( x 0 ) = f ( x 0 ) , p n ( x 0 ) = f ( x 0 ) , p_n(x_0)=f(x_0), p_n'(x_0)=f'(x_0),

p n ( x 0 ) = f ( x 0 ) , , p n ( n ) ( x 0 ) = f ( n ) ( x 0 ) , p_n''(x_0)=f''(x_0), \cdots, p_n^{(n)}(x_0)=f^{(n)}(x_0),
按这些等式来确定系数 a 0 , a 1 , a 2 , , a n a_0, a_1, a_2, \cdots, a_n 。对 p n ( x ) p_n(x) 求各阶导数,然后分别代入以上等式,得
a 0 = f ( x 0 ) , 1 a 1 = f ( x 0 ) , a_0=f(x_0), 1\cdot a_1=f'(x_0),

2 ! a 2 = f ( x 0 ) , , n ! a n = f ( n ) ( x 0 ) 2!a_2=f''(x_0), \cdots , n!a_n=f^(n)(x_0)

可得
a 0 = f ( x 0 ) , a 1 = f ( x 0 ) , a 2 = 1 2 ! f ( x 0 ) , , a n = 1 n ! f ( n ) ( x 0 ) a_0=f(x_0), a_1=f'(x_0), a_2=\frac{1}{2!}f''(x_0), \cdots, a_n=\frac{1}{n!}f^{(n)}(x_0)

由此可得
p n ( x ) = f ( x 0 ) + f ( x 0 ) ( x x 0 ) + f ( x 0 ) 2 ! ( x x 0 ) 2 + + f ( n ) ( x 0 ) n ! ( x x 0 ) n p_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n

泰勒中值定理1

如果函数 f ( x ) f(x) x 0 x_0 处具有 n n 阶导数,那么存在 x 0 x_0 的一个领域,对于该邻域内的任一 x x ,有
f ( x ) = f ( x 0 ) + f ( x 0 ) ( x x 0 ) + f ( x 0 ) 2 ! ( x x 0 ) 2 + + f ( n ) ( x 0 ) n ! ( x x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)

其中
R n ( x ) = o ( ( x x 0 ) n ) R_n(x)=o((x-x_0)^n)

泰勒中值定理2

如果函数 f ( x ) f(x) x 0 x_0 的某个邻域 U ( x 0 ) U(x_0) 内具有 ( n + 1 ) (n+1) 阶导数,那么对任一 x U ( x 0 ) x\in U(x_0) ,有
f ( x ) = f ( x 0 ) + f ( x 0 ) ( x x 0 ) + f ( x 0 ) 2 ! ( x x 0 ) 2 + + f ( n ) ( x 0 ) n ! ( x x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)

其中
R n ( x ) = f ( n + 1 ) ( ζ ) ( n + 1 ) ! ( x x 0 ) n + 1 R_n(x)=\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-x_0)^{n+1}

这里 ζ \zeta x 0 x_0 x x 之间的某个值。

二元函数的泰勒级数

如果函数 f ( x , y ) f(x, y) ( x 0 , y 0 ) (x_0, y_0) 处具有 n n 阶偏导数,那么存在 ( x 0 , y 0 ) (x_0, y_0) 的一个领域,对于该邻域内的任一 ( x , y ) (x,y) ,有
f ( x , y ) = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x x 0 ) + f y ( x 0 , y 0 ) ( y y 0 ) + f x x ( x 0 , y 0 ) 2 ! ( x x 0 ) 2 + f x y ( x 0 , y 0 ) 2 ! ( x x 0 ) ( y y 0 ) + f y x ( x 0 , y 0 ) 2 ! ( x x 0 ) ( y y 0 ) + f y y ( x 0 , y 0 ) 2 ! ( y y 0 ) 2 + R n ( x , y ) \begin{aligned} f(x,y)= & f(x_0, y_0)+ \\ & f_x'(x_0, y_0)(x-x_0)+f_y'(x_0, y_0)(y-y_0)+ \\ & \frac{f_{xx}''(x_0, y_0)}{2!}(x-x_0)^2 + \frac{f_{xy}''(x_0, y_0)}{2!}(x-x_0)(y-y_0) + \frac{f_{yx}''(x_0, y_0)}{2!}(x-x_0)(y-y_0) + \frac{f_{yy}''(x_0, y_0)}{2!}(y-y_0)^2\\ &\cdots + R_n(x, y) \end{aligned}

多元函数的泰勒级数

如果函数 f ( x n ) f(x^n) x 0 n x_0^n 处具有 n n 阶偏导数,其中 n = 1 , 2 , 3 , n=1,2,3, \cdots ,那么存在 x 0 n x_0^n 的一个领域,对于该邻域内的任一 x n x^n ,有
f ( x 1 , x 2 , x 3 , , x n ) = f ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) + i = 1 n ( x i x 0 i ) f x i ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) + 1 2 ! i , j = 1 n ( x i x 0 i ) ( x j x 0 j ) f i j ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) + R n ( x n ) \begin{aligned} f(x^1, x^2, x^3,\cdots, x^n) = & f(x_0^1, x_0^2, x_0^3,\cdots, x_0^n)+ \\ & \sum_{i=1}^n(x^i-x_0^i)f_{x^i}'(x_0^1, x_0^2, x_0^3,\cdots, x_0^n) + \\ &\frac{1}{2!}\sum_{i,j=1}^n(x^i-x_0^i)(x^j-x_0^j)f_{ij}''(x_0^1, x_0^2, x_0^3,\cdots, x_0^n)+ \\ & R_n(x^n) \end{aligned}

矢量函数的泰勒展开

对于矢量函数 F ( r ) \vec{F}(\vec{r}) ,可将其看成三元函数 F ( x , y , z ) \vec{F}(x, y, z) ,根据上面的多元函数的泰勒级数,可以得到矢量函数的泰勒展开式为
F ( r ) = F ( x , y , z ) = F ( x 0 , y 0 , z 0 ) + ( x x 0 ) F x + ( y y 0 ) F y + ( z z 0 ) F z + R n ( x , y , z ) = F ( r 0 ) + [ ( r r 0 ) ] F + R n ( r ) \begin{aligned} \vec{F}(\vec{r})= &\vec{F}(x,y,z) \\ =&\vec{F}(x_0,y_0,z_0)+(x-x_0)\frac{\partial \vec{F}}{\partial x}+(y-y_0)\frac{\partial \vec{F}}{\partial y}+(z-z_0)\frac{\partial \vec{F}}{\partial z}+R_n(x,y,z) \\ =&\vec{F}(\vec{r}_0) + [(\vec{r}-\vec{r}_0)\cdot \nabla]\vec{F} + R_n(\vec{r}) \end{aligned}

将泰勒级数写成矩阵形式

f ( X ) = f ( X 0 ) + [ f ( X 0 ) ] T + 1 2 ! [ X X k ] T H ( X 0 ) ( X X 0 ) + R n ( X ) f(\bm{X})=f(\bm{X}_0)+[\nabla f(\bm{X}_0)]^T+\frac{1}{2!}[\bm{X}-\bm{X}_k]^TH(\bm{X}_0)(\bm{X}-\bm{X}_0)+R_n(\bm{X})

其中
H ( X 0 ) = [ 2 f ( X 0 ) x 1 2 2 f ( X 0 ) x 1 x 2 2 f ( X 0 ) x 1 x n 2 f ( X 0 ) x 2 x 1 2 f ( X 0 ) x 2 2 2 f ( X 0 ) x 2 x n 2 f ( X 0 ) x n x 1 2 f ( X 0 ) x n x 2 2 f ( X 0 ) x n 2 ] H(\bm{X}_0)= \begin{bmatrix} \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1^2} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1 x_2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1 x_n} \\ \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2 x_1} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2^2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n x_1} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n x_2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n^2} \\ \end{bmatrix}

发布了42 篇原创文章 · 获赞 5 · 访问量 2975

猜你喜欢

转载自blog.csdn.net/Function_RY/article/details/102811611