第一章 视频传输协议总结、码率

视频图像传输有以下几个特点

1:要求传输延时小,实时性高

2:传输流量大,要求传输效率高

3:在一定程序上允许传输错误或数据丢失

使用UDP协议来传输视频相对TCP协议更理想(巴拉巴拉UDP和TCP区别)

用一句简单的话总结:RTSP发起/终结流媒体、RTP传输流媒体数据 、RTCP对RTP进行控制,同步之所以以前对这几个有点分不清,是因为CTC标准里没有对RTCP进行要求,因此在标准RTSP的代码中没有看到相关的部分。而在私有RTSP的代码中,有关控制、同步等,是在RTP Header中做扩展定义实现的

RTP:实时传输协议(Real-time Transport Protocol)

RTP/RTCP是实际传输数据的协议 

RTP传输音频/视频数据,如果是PLAY,Server发送到Client端,如果是RECORD,可以由Client发送到Server 

整个RTP协议由两个密切相关的部分组成:RTP数据协议和RTP控制协议(即RTCP)

RTSP:实时流协议(Real Time Streaming Protocol,RTSP)

RTSP的请求主要有DESCRIBE,SETUP,PLAY,PAUSE,TEARDOWN,OPTIONS等,顾名思义可以知道起对话和控制作用 

RTSP的对话过程中SETUP可以确定RTP/RTCP使用的端口,PLAY/PAUSE/TEARDOWN可以开始或者停止RTP的发送,等等

RTCP:

RTP/RTCP是实际传输数据的协议 

RTCP包括Sender Report和Receiver Report,用来进行音频/视频的同步以及其他用途,是一种控制协议 

每个协议的概要介绍:

一、RTP数据协议 

    RTP数据协议负责对流媒体数据进行封包并实现媒体流的实时传输,每一个RTP数据报都由头部(Header)和负载(Payload)两个部分组成,其中头部前12个字节的含义是固定的,而负载则可以是音频或者视频数据。RTP数据报的头部格式如图1所示:

    其中比较重要的几个域及其意义如下:

CSRC记数(CC):表示CSRC标识的数目。CSRC标识紧跟在RTP固定头部之后,用来表示RTP数据报的来源,RTP协议允许在同一个会话中存在多个数据源,它们可以通过RTP混合器合并为一个数据源。例如,可以产生一个CSRC列表来表示一个电话会议,该会议通过一个RTP混合器将所有讲话者的语音数据组合为一个RTP数据源。

负载类型(PT):标明RTP负载的格式,包括所采用的编码算法、采样频率、承载通道等。例如,类型2表明该RTP数据包中承载的是用ITU G.721算法编码的语音数据,采样频率为8000Hz,并且采用单声道。

序列号:用来为接收方提供探测数据丢失的方法,但如何处理丢失的数据则是应用程序自己的事情,RTP协议本身并不负责数据的重传。

时间戳:记录了负载中第一个字节的采样时间,接收方能够时间戳能够确定数据的到达是否受到了延迟抖动的影响,但具体如何来补偿延迟抖动则是应用程序自己的事情。

    从RTP数据报的格式不难看出,它包含了传输媒体的类型、格式、序列号、时间戳以及是否有附加数据等信息,这些都为实时的流媒体传输提供了相应的基础。RTP协议的目的是提供实时数据(如交互式的音频和视频)的端到端传输服务,因此在RTP中没有连接的概念,它可以建立在底层的面向连接或面向非连接的传输协议之上;RTP也不依赖于特别的网络地址格式,而仅仅只需要底层传输协议支持组帧(Framing)和分段(Segmentation)就足够了;另外RTP本身还不提供任何可靠性机制,这些都要由传输协议或者应用程序自己来保证。在典型的应用场合下,RTP一般是在传输协议之上作为应用程序的一部分加以实现的,如图2所示:

二、RTCP控制协议 

    RTCP控制协议需要与RTP数据协议一起配合使用,当应用程序启动一个RTP会话时将同时占用两个端口,分别供RTP和RTCP使用。RTP本身并不能为按序传输数据包提供可靠的保证,也不提供流量控制和拥塞控制,这些都由RTCP来负责完成。通常RTCP会采用与RTP相同的分发机制,向会话中的所有成员周期性地发送控制信息,应用程序通过接收这些数据,从中获取会话参与者的相关资料,以及网络状况、分组丢失概率等反馈信息,从而能够对服务质量进行控制或者对网络状况进行诊断。 

    RTCP协议的功能是通过不同的RTCP数据报来实现的,主要有如下几种类型:

SR:发送端报告,所谓发送端是指发出RTP数据报的应用程序或者终端,发送端同时也可以是接收端。

RR:接收端报告,所谓接收端是指仅接收但不发送RTP数据报的应用程序或者终端。

SDES:源描述,主要功能是作为会话成员有关标识信息的载体,如用户名、邮件地址、电话号码等,此外还具有向会话成员传达会话控制信息的功能。

BYE:通知离开,主要功能是指示某一个或者几个源不再有效,即通知会话中的其他成员自己将退出会话。

APP:由应用程序自己定义,解决了RTCP的扩展性问题,并且为协议的实现者提供了很大的灵活性。

    RTCP数据报携带有服务质量监控的必要信息,能够对服务质量进行动态的调整,并能够对网络拥塞进行有效的控制。由于RTCP数据报采用的是多播方式,因此会话中的所有成员都可以通过RTCP数据报返回的控制信息,来了解其他参与者的当前情况。

    在一个典型的应用场合下,发送媒体流的应用程序将周期性地产生发送端报告SR,该RTCP数据报含有不同媒体流间的同步信息,以及已经发送的数据报和字节的计数,接收端根据这些信息可以估计出实际的数据传输速率。另一方面,接收端会向所有已知的发送端发送接收端报告RR,该RTCP数据报含有已接收数据报的最大序列号、丢失的数据报数目、延时抖动和时间戳等重要信息,发送端应用根据这些信息可以估计出往返时延,并且可以根据数据报丢失概率和时延抖动情况动态调整发送速率,以改善网络拥塞状况,或者根据网络状况平滑地调整应用程序的服务质量。

三、RTSP实时流协议 

    作为一个应用层协议,RTSP提供了一个可供扩展的框架,它的意义在于使得实时流媒体数据的受控和点播变得可能。总的说来,RTSP是一个流媒体表示协议,主要用来控制具有实时特性的数据发送,但它本身并不传输数据,而是必须依赖于下层传输协议所提供的某些服务。RTSP可以对流媒体提供诸如播放、暂停、快进等操作,它负责定义具体的控制消息、操作方法、状态码等,此外还描述了与RTP间的交互操作(RFC2326)。

    RTSP在制定时较多地参考了HTTP/1.1协议,甚至许多描述与HTTP/1.1完全相同。RTSP之所以特意使用与HTTP/1.1类似的语法和操作,在很大程度上是为了兼容现有的Web基础结构,正因如此,HTTP/1.1的扩展机制大都可以直接引入到RTSP中。

    由RTSP控制的媒体流集合可以用表示描述(Presentation Description)来定义,所谓表示是指流媒体服务器提供给客户机的一个或者多个媒体流的集合,而表示描述则包含了一个表示中各个媒体流的相关信息,如数据编码/解码算法、网络地址、媒体流的内容等。

    虽然RTSP服务器同样也使用标识符来区别每一流连接会话(Session),但RTSP连接并没有被绑定到传输层连接(如TCP等),也就是说在整个RTSP连接期间,RTSP用户可打开或者关闭多个对RTSP服务器的可靠传输连接以发出RTSP 请求。此外,RTSP连接也可以基于面向无连接的传输协议(如UDP等)。

    RTSP协议目前支持以下操作:

检索媒体:允许用户通过HTTP或者其它方法向媒体服务器提交一个表示描述。如表示是组播的,则表示描述就包含用于该媒体流的组播地址和端口号;如果表示是单播的,为了安全在表示描述中应该只提供目的地址。

邀请加入:媒体服务器可以被邀请参加正在进行的会议,或者在表示中回放媒体,或者在表示中录制全部媒体或其子集,非常适合于分布式教学。

添加媒体:通知用户新加入的可利用媒体流,这对现场讲座来讲显得尤其有用。与HTTP/1.1类似,RTSP请求也可以交由代理、通道或者缓存来进行处理。

       HTTP与RTSP传输的差别。概括的讲,RTSP被许多公司防火墙拒绝,而HTTP可以作为一个普通的文件通过;RTSP适合于大数据量、高可用性的流,如直播事件、长事件或大型文件;HTTP更适合于较小的数据传输和交互;当终端用户正在观看时,RTSP允许用户在服务器有效的回放媒体,HTTP更象下载一段媒体并在客户机上播放。从终端用户观点来看,RTSP看起来像是文件从中心位置播放,有点象广播,而HTTP感觉更象时从视频库中取视频,并在家里的机器上播放。从服务质量的观点上看,对于流,RTSP有更好的体验,RTSP提供类似于VCR的媒体控制,如暂停、快进、倒退和绝对定位。使用HTTP传输,只能在整个流下载完成后,播放器软件再模拟该过程。虽然,RTSP能够使用TCP或UDP,但是RTSP控制经常与RTP联合使用,以最好的服务质量传送实际的媒体数据。

视频相关的协议有很多,不同的公司,甚至有自己的协议标准。本文尽量涵盖目前常见的视频相关的协议。

1,RTSP/RTP/RTCP协议族

本协议族是最早的视频传输协议。其中RTSP协议用于视频点播的会话控制,例如发起点播请求的SETUP请求,进行具体播放操作的PLAY、PAUSE请求,视频的跳转也是通过PLAY请求的参数支持的。而RTP协议用于具体的视频数据流的传输。RTCP协议中的C是控制的意思,用于在视频流数据之外,丢包或者码率之类的控制。

该协议族RTSP是建立在TCP之上的,RTP、RTCP建立在UDP之上。不过也可以通过interleave的方式,将RTP和RTSP一起在同一个TCP连接上传输。

RTSP协议族,是最早被提出来的,因此很多考虑的地方,都还带有早期的特征。比如使用UDP,是考虑到传输的效率,以及视频协议本身对丢包就有一定的容忍度。但是UDP协议,显然不能用于更大规模的网络,而且复杂网络下路由器的穿透也是问题。

从视频角度而言,RTSP协议族的优势,在于可以控制到视频帧,因此可以承载实时性很高的应用。这个优点是相对于HTTP方式的最大优点。H.323视频会议协议,底层一般采用RTSP协议。RTSP协议族的复杂度主要集中在服务器端,因为服务器端需要parse视频文件,seek到具体的视频帧,而且可能还需要进行倍速播放(就是老旧的DVD带的那种2倍速,4倍速播放的功能),倍速播放功能是RTSP协议独有的,其他视频协议都无法支持。

缺点,就是服务器端的复杂度也比较高,实现起来也比较复杂。

2,HTTP协议

HTTP的视频协议,主要是在互联网普及之后。在互联网上看视频的需求下形成的。

2.1

最初的HTTP视频协议,没有任何特别之处,就是通用的HTTP文件渐进式下载。本质就是下载视频文件,而利用视频文件本身的特点,就是存在头部信息,和部分视频帧数据,就完全可以解码播放了。显然这种方式需要将视频文件的头部信息放在文件的前面。有些例如faststart工具,就是专门做这个功能的。

但是最为原始的状态下,视频无法进行快进或者跳转播放到文件尚未被下载到的部分。这个时候对HTTP协议提出了range-request的要求。这个目前几乎所有HTTP的服务器都支持了。range-request,是请求文件的部分数据,指定偏移字节数。在视频客户端解析出视频文件的头部后,就可以判断后续视频相应的帧的位置了。或者根据码率等信息,计算相应的为位置。

2.2

支持HTTP range-request的服务器,目前就可以支持我们一般网络看视频的要求了。但是,这种方式,无法支持实时视频流,或者准实时视频流。因为视频流,是不存在一个视频文件的概念的。HTTP协议播放视频的好处,就是简单。采取通用的HTTP服务器,就可以提供服务,不需要专门类型的服务器,也不需要特别的网络端口,穿过路由器防火墙一点都没有问题。而且还可以利用通用的CDN来简化视频的部署分发的工作,减少带宽的使用。

这个是目前用于PC端或者网页端,视频点播业务,最常见的解决方案。客户端的实现,一般采用flash完成,flash本是的videoplayer或者videodisplay控件就可以完成。资源一般采用flv格式,也可以使用mp4格式。

在此基础上,多家公司推出了自己的解决方法。

2.3 HLS HDS MSS DASH

苹果推出的HTTP Live Streaming,就是随着苹果设备的普及得以广泛应用的一种。从名词就可以判断出来,HLS支持Live直播式的视频传输。HTTP采用m3u8作为索引文件,视频为MPEG2-TS格式的片段文件。如果为直播视频流,则采取更新m3u8文件,从而更新视频索引列表,达到视频直播的目的。但是这种方法,因为最终视频是片段文件,所以必然存在片段视频长度的延迟。因此只可以用于对实时性要求没有那么高的准实时视频流。但是HLS方式,因为采用了较早的MPEG2-TS格式,这种格式的overhead,也就是头部信息占据总文件的比例比较大,也就是效率不够高。之所以没有使用其他格式,主要是商业竞争和版权的问题。

相应的,adobe公司,推出相似的HTTP dynamic streaming。这种方式本质和HLS的策略是类似的,就是通过索引文件+视频片段的方式。但是显然采用的索引格式和视频片段格式都不一样的。HDS采用的是视频格式是flv或者f4v,索引格式记不清楚了。

类似的,微软也推出了Microsoft Smooth Streaming,也即是mss的视频播出方式,采用的视频格式是分段mp4格式。

MPEG标准组则推出了Dynamic Adaptive Streaming over HTTP,DASH.采用的视频格式为3GPP吧。

显然,这个目前是百花齐放的状态,虽然最常用的的是HLS,谁叫苹果这么霸气呢。而安卓和苹果上面对于flash都有限制,而HDS是adobe推出在adobe平台上面的。mss,只有在少数几个地方见到过。dash,目前仅仅是论文里面的产物。

以上的协议,主要是解决一个问题,就是自适应码率切换,上面的dynamic,adaptive都是类似的意思。主要是利用索引文件中同时给出不同码率的视频文件的地址,这样播放器端,可以根据带宽情况,自适应选择不同码率的视频文件。

同时在视频直播方面,在安卓和iOS平台以外,还有很多视频服务器提供厂商,自己开发协议,一般采用方式为固定时间片段的flv文件的方式(采用flv,是因为flash上方便播放)

2.4 HTML5

同时HTML制定厂商也不寂寞,推出HTML5这种方式,这种方式本质上,和前面的HTTP视频协议没有任何区别。但是播放器端,不再依赖于特定的插件如flash,或者其他播放软件,而是可以支持浏览器的直接视频播放。采用的是html中嵌入video标签,同时直接指明视频的url。不过,不同的浏览器,对于音视频的格式支持不完全相同。比较通用的是视频H。264格式,音频AAC格式,封装格式MP4。

2.5其他

HTTP协议的基础上,各家公司,针对自己的业务特性,也可能开发自己的专有的数据格式,或者协议。但是都是在上述的基本上做出一些细微的修改而已。毕竟国内的技术体系,还完全无法提出一个新的技术的程度。(google,就提出新的编码格式替换H.264,SPDY协议,这个国内做不到的)。

一般只会做到例如HTTP特殊字段或者特殊参数,传递到flash中做出一定的解释。或者在原有的视频文件格式基础上添加一些特殊意义的头部等等。

3,RTMP

这个是adobe公司自己推出的视频播放协议。需要专用的服务器,如FMS,开源的有red5.这种协议也是flash默认支持的。

----

总体来看,视频相关的协议发展,是从专用的协议、服务器,逐渐向HTTP过渡的过程。而且逐渐适应网络的发展和需求,复杂多变的网络环境,才催生了http的视频协议。

1,视频码率一般设多大?

对于1080P的视频而言,蓝光视频的码率是20Mb/s,一般下载的视频码率大都是10Mb/s,一些IPCamera/无人机的码率是2~8Mb/s,而很多视频网站的码率甚至低于5M/s

同等分辨率的情况下,码率越大,清晰度越大,但同时对网络带宽的占用也越大,具体码率该设置为多少,需要看应用的具体场景了。

2. 播放中出现“跳跃”和“花屏”现象?

“跳跃”和“花屏”现象绝大多数原因是网络传输过程中由于信号不好导致丢失了“关键帧”/“参考帧” 引起的,下面来进一步解释。

视频在网上传播之前是需要压缩的,而简单来解释视频压缩的核心思想就是:每隔10~50帧取视频中的一帧图像作为“关键帧”,而随后的几帧图像由于时间/空间的冗余和相关性,我们只需记录其与关键帧的“差异”信息即可,这样视频文件就可以不用把每一帧完整的图像数据全部保存下来,从而起到了节省空间的效果。

由此可见,如果丢失掉了“关键帧”,随后的几帧图像自然就无法正常地解码了,因此产生了“花屏”现象。

从技术的角度,怎么解决“花屏”现象呢?——当我们在视频传输过程中,通过帧序号发现丢帧后,可以跳过随后的非“关键帧”,直到遇到下一个关键帧再送入解码。这样的确可以解决“花屏”现象,但是由于跳跃了很多帧,因此会出现视频图像的不连续情况(即“跳跃”现象)。

3. 播放过程中出现“卡顿”现象?

由于网络是很不稳定的,因此,音视频数据的传输也是时快时慢的,在播放网络视频流的过程中,一定要根据时间戳来决定何时解码何时显示,而不是来一帧就播放一帧,另外,添加一定数量的“帧缓冲区”可以有效地降低由于网络抖动带来的“卡顿”现象。

4. 音视频实时传输的延时主要来自哪里 ?

1) 编码器/解码器一般需要缓冲2~4帧

2) 编码/解码的耗时

3) 业务代码中的帧缓冲区

4) 网络传输延时

5) 代码中的数据拷贝

一般情况下,帧率为30f/s的视频,每缓冲n帧,就会增加1000/30*n毫秒的延时。因此,要想减少延时,则必须通过分析和测试找到上述每一部分的延时,尽量减少数据的拷贝和缓冲。

5. 边下边播的原理 ?

边下边播与播放本地文件其实差不多,只不过是文件数据不在本地,在播放器播放到指定位置之前,后台线程把需要的数据提前下载下来而已。

猜你喜欢

转载自www.cnblogs.com/zhichao123/p/11761183.html