ResNet的TensorFlow实现

在实现网络之前,我们首先要对残差网络的实现方法有一定的了解,这里不再过多的赘述。要实现一个网络,最重要的当然是基本框架的搭建了,我们从这张图片来入手resnet的基本框架。

                                                     图1 

(以101为例,如果没有特别说明,后面默认为Res101网络)不难看出,ResNet101的卷积计算共由5部分组成,其中第一部分很小,只有一个卷积层和一个池化层,主要的计算过程还是集中在其余的四个部分当中。

 

虽说这张图将网络描述的很清晰,但是以这种表格的形式确实是很难让人理解,在这,我们将它描述的再稍微立体一点。


我们从网络的最基本单元入手,

                                     图2 

相信这张图片并不会让人感到陌生,左侧是普通的残差连接的结构,右面的则是bottleneck 结构,我们在实现的时候选取右侧的结构 :

一个ResNet可能有不同的层数,但无论是多少层的残差网络在对输入数据第一次处理时,都需要进行卷积和池化操作来进行预处理(图1 中的conv1执行的就是这个操作)。 例如一个101层的网络就可以表示为2+99,其中2就是预处理,99是余下的卷积层的数目,bottleneck 结构的残差网络由三个卷积层组成,所以共有 99/3 = 33 组(个)残差网络。

 

看到这里,在翻回来看一下第一张图,貌似就可以理解的更加透彻,更加立体一些了。

那么我们继续:

为了使得数据更加有特征性且更容易分类,我们人为的将余下整个网络分为四部分,分别称之为block1~4; 并规定了第一个block模块和最后一个block模块都只能包含3个残差网络,即3x3 + 3x3 =18 层卷积网络;

 

余下的block2和block3的残差网络个数分别为4和23,具体为什么是这样,我也就不是很了解了。。。

我们做一下总结,4个block,每个block有3个卷积层,也就是(3+4+23+3)x3 = 99,在加上前面的预处理,正好是101.。。。好了,这下总算搞清楚Res101到底是怎么回事了,在翻回去看一下图1 ,也应该就能顺理成章的了解了。

图3

点开这张tensorboard图仔细看一下,你可能会对总体的框架有着进一步的理解。


(未完。。。。)

这里我简单的放一下代码的部分,以后再来进一步解释

# 定义ResNet基本模块组的数据结构
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
    'A named tuple describing a ResNet block'

# 降采样
def subsample(inputs, factor, scope=None):
    if factor == 1:
        return inputs
    else:
        return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)

# 卷积层
def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None):
    if stride == 1:
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME', scope=scope)
    else:
        pad_total = kernel_size - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                 [pad_beg, pad_end], [0, 0]])
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride, padding='VALID', scope=scope)

# 堆叠Block
@slim.add_arg_scope
def stack_arg_dense(net, blocks, outputs_collections=None):

    for block in blocks:
        with tf.variable_scope(block.scope, 'block', [net]) as sc:
            for i, unit in enumerate(block.args):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                    unit_depth, unit_depth_bottleneck, unit_stride = unit
                    net = block.unit_fn(net,
                                        depth=unit_depth,
                                        depth_bottleneck=unit_depth_bottleneck,
                                        stride=unit_stride)

            net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)

    return net

# 定义ResNet通用的arg_scope
def resnet_arg_scope(is_training=True,
                    weight_decay=0.0001,
                    batch_norm_decay=0.997,
                    batch_norm_epsilon=1e-5,
                    batch_norm_scale=True):

    batch_norm_params = {
        'is_training': is_training,
        'decay': batch_norm_decay,
        'epsilon': batch_norm_scale,
        'scale': batch_norm_scale,
        'updates_collections': tf.GraphKeys.UPDATE_OPS
    }

    with slim.arg_scope([slim.conv2d],
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        weights_initializer=slim.variance_scaling_initializer(),
                        activation_fn=tf.nn.relu,
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        with slim.arg_scope([slim.batch_norm], **batch_norm_params):
            with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
                return arg_sc

# 核心的bottleneck残差学习单元
@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, outputs_collections=None, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')

        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                                   normalizer_fn=None, activation_fn=None, scope='shortcut')

        residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
        residual = conv2d_same(residual, depth_bottleneck, 3, stride, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               normalizer_fn=None, activation_fn=None, scope='conv3')

        output = shortcut + residual

        return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)

# 生成ResNet的主函数
def resnet_v2(inputs, blocks, num_classes=None, global_pool=True, include_root_block=True, reuse=None, scope=None):

    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_point_collections = sc.original_name_scope + 'end_points'
        with slim.arg_scope([slim.conv2d, bottleneck, stack_arg_dense], outputs_collections=end_point_collections):
            net = inputs
            if include_root_block:   # 是否添加最前面的7x7卷积和最大池化层
                with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None):
                    net = conv2d_same(net, 64, 7, stride=2, scope='conv1')
                net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

            net = stack_arg_dense(net, blocks)
            net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')

            if global_pool:   # 是否使用最后一层全局平均池化
                net = tf.reduce_mean(net, [1, 1], name='pool5', keep_dims=True)

            if num_classes is not None:
                net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits')

            end_points = slim.utils.convert_collection_to_dict(end_point_collections)
            if num_classes is not None:
                end_points['predictions'] = slim.softmax(net, scope='predictions')

            return net, end_points
# 152层的ResNet
def resnet_v2_152(inputs, num_classes=None, global_pool=None, reuse=None, scope='resnet_v2_152'):
    blocks = [Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
              Block('block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
              Block('block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
              Block('block4', bottleneck, [(1024, 512, 1)] * 3)]
    return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope)

猜你喜欢

转载自blog.csdn.net/Pierce_KK/article/details/85106952
今日推荐