[数据结构与算法] 排序(二) 平均时间复杂度O(n^2)

冒泡排序、插入排序、选择排序的时间复杂度均为O(n^2)。

插入排序和冒泡排序的时间复杂度相同,都是 O(n^2 ),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?


冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一轮冒泡会让至少一个元素移动到它应该在的位置,重复 n 轮,就完成了 n 个数据的排序工作。

我们要对一组数据 4,5,6,3,2,1,从小到到大进行排序。第一次冒泡操作的详细过程就是这样:

可以看出,经过一轮冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 轮这样的冒泡操作就行了。

实际上,刚讲的冒泡过程还可以优化。当某轮冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给 6 个元素排序,只需要 4 轮冒泡操作就可以了。

//a表示数组,n表示数组大小
void bubbleSort(int *a, int n) {
	if (n <= 1) {
		return;
	}

	for (int i = 0; i < n; i++) {
		bool has_exchange = false;
		for (int j = 0; j < n - i - 1; j++) {
			if (a[j] > a[j + 1]) {
				int tmp = a[j];
				a[j] = a[j + 1];
				a[j + 1] = tmp;
				has_exchange = true; //存在数据交换
			}
		}
		if (!has_exchange) break; //没有数据交换,提前退出
	}
}

第一,冒泡排序是原地排序算法吗?
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为O(1),是一个原地排序算法。
第二,冒泡排序是稳定的排序算法吗?
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。
第三,冒泡排序的时间复杂度是多少?
最好情况下,要排序的数据已经是有序的了,我们只需要进行一轮冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n^2)。

最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过,平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。

对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。

有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度

逆序度的定义正好跟有序度相反(默认从小到大为有序),我想你应该已经想到了。关于逆序度,我就不举例子讲了。你可以对照我讲的有序度的例子自己看下。

逆序元素对:a[i] > a[j], 如果 i < j。

关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了

冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。此例中就是 15–3=12,要进行 12 次交换操作。


对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。


换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n^2),所以平均情况下的时间复杂度就是 O(n^2)。


这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。


插入排序(Insertion Sort)

我们先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

插入排序具体是如何借助上面的思想来实现排序的呢

首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

如图所示,要排序的数据是 4,5,6,1,3,2,其中左侧为已排序区间,右侧是未排序区间。

插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

为什么说移动次数就等于逆序度呢?我拿刚才的例子画了一个图表,你一看就明白了。满有序度是 n*(n-1)/2=15,初始序列的有序度是 5,所以逆序度是 10。插入排序中,数据移动的个数总和也等于 10=3+3+4。

//插入排序(从小到大排序版本: a表示数组,n表示数组大小
void insertionSort(int *a, int n) {
	if (n <= 1) {
		return;
	}

	//初始已排序区间只有一个元素,就是数组的第一个元素
	for (int i = 1; i < n; i++) {
		int value = a[i];
		int j = i - 1; //已排序区间的最后一个元素的标号		

		for (; j >= 0; j--) {
			//从已排序区间的最后一个元素开始与value进行比较
			if (a[j] > value) {
				a[j + 1] = a[j]; //数据移动
			}
			else {
				break; //已经找到了插入位置(第一个小于等于value的值),退出循环
			}
		}

		a[j + 1] = value;
	}
}

第一,插入排序是原地排序算法吗?
从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。
第二,插入排序是稳定的排序算法吗?
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

第三,插入排序的时间复杂度是多少?
如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据
如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n^2)。
还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n^2)。
 


选择排序(Selection Sort)


选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾

选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n^2)

那选择排序是稳定的排序算法吗?这个问题我着重来说一下。
答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

比如 5,8,5,2,9 这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个 5 交换位置,那第一个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了

void selectionSort(int *a, int n) {
	if (n <= 1)
		return;
	//每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
	for (int i = 0; i < n-1; i++) {
		int min_index = i;
		for (int j = i + 1; j < n; j++) {
			if (a[j] < a[min_index]) {
				min_index = j;
			}
		}

		if (min_index != i) {
			int tmp = a[i];
			a[i] = a[min_index];
			a[min_index] = tmp;
		}
	}
}


 


解答开篇

我们来看开篇的问题:冒泡排序和插入排序的时间复杂度都是 O(n ),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

我们前面分析冒泡排序和插入排序的时候讲到,冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。
但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要3 个赋值操作,而插入排序只需要 1 个。我们来看这段操作:
 

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
flag = true;
} 

插入排序中数据的移动操作:
if (a[j] > value) {
a[j+1] = a[j]; // 数据移动
} else {
break;
}

我们把执行一个赋值语句的时间粗略地计为单位时间(unit_time),然后分别用冒泡排序和插入排序对同一个逆序度是 K 的数组进行排序。用冒泡排序,需要 K 次交换操作,每次需要 3 个赋值语句,所以交换操作总耗时就是 3*K 单位时间。而插入排序中数据移动操作只需要 K 个单位时间。

这个只是我们非常理论的分析,为了实验,针对上面的冒泡排序和插入排序的 Java 代码,我写了一个性能对比测试程序,随机生成 10000 个数组,每个数组中包含 200 个数据,然后在我的机器上分别用冒泡和插入排序算法来排序,冒泡排序算法大约 700ms 才能执行完成,而插入排序只需要 100ms 左右就能搞定!

所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n ),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间,我们只是讲了最基础的一种。如果你对插入排序的优化感兴趣,可以自行学习一下希尔排序。
 


这三种时间复杂度为 O(n^2) 的排序算法中,冒泡排序、选择排序,可能就纯粹停留在理论的层面了,学习的目的也只是为了开拓思维,实际开发中应用并不多,但是插入排序还是挺有用的。后面讲排序优化的时候,我会讲到,有些编程语言中的排序函数的实现原理会用到插入排序算法。
 


思考
我们讲过,特定算法是依赖特定的数据结构的。我们今天讲的几种排序算法,都是基于数组实现的。如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢?

有个前提,是否允许修改链表的节点value值,还是只能改变节点的位置。一般而言,考虑只能改变节点位置,冒泡排序相比于数组实现,比较次数一致,但交换时操作更复杂;插入排序,比较次数一致,不需要再有后移操作,找到位置后可以直接插入,但排序完毕后可能需要倒置链表;选择排序比较次数一致,交换操作同样比较麻烦。综上,时间复杂度和空间复杂度并无明显变化,若追求极致性能,冒泡排序的时间复杂度系数会变大,插入排序系数会减小,选择排序无明显变化。
 

猜你喜欢

转载自blog.csdn.net/qq_25800311/article/details/89160261