LightOJ - 1282 Leading and Trailing (幂指转换)(快速幂取模)

题干:

给你两个数n,k,求 n k n^k 的前三位和后三位。
n (2 ≤ n < 2 31 2^{31} ) and k (1 ≤ k ≤ 1 0 7 10^7 ).

思路:

后三位比较好求,就是再对 n k n^k 求快速幂的时候模1000就行;
对于前三位,我们先设 a b a^{b} = 1 0 c 10^{c} ==> log 10 a b \log_{10} a^{b} = log 10 1 0 c \log_{10} 10^{c} ==> b* log 10 a \log_{10} a = c
1 0 c 10^{c} = 1 0 c 1 + c 2 10^{c1+c2} = 1 0 c 1 10^{c1} * 1 0 c 2 10^{c2} (c1为c的整数部分,c2为c的小数部分)
所以 1 0 c 1 10^{c1} 代表后缀零, 1 0 c 2 10^{c2} 前几位数。

#include <cstdio>  
#include <cstring>
#include <iostream>    
#include <algorithm>
#include <cmath>
using namespace std;
const long long c=1000;

long long ol(long long n)
{
	long long ans=n;
	for(int i=2;i*i<=n;i++){
		if(n%i==0)
		{
			ans-=ans/i;
			while(n%i==0)
			   n/=i;
		}
	}
	if(n>1)   ans-=ans/n;
	return ans;
}

long long qc(long long a,long long b)
{
	long long ans=1;
	while(b)
	{
		if(b&1)
			ans=(ans*a)%c;
		a=(a*a)%c;
		b>>=1;
		//printf("%lld %lld %lld\n",a,b,ans);
	}
	return ans;
}

int main()
{
	long long t,a,b,ans;
	double p,ans1;
	scanf("%d",&t);
	//printf("%lld\n",oc);
	for(int i=1;i<=t;i++){
		scanf("%lld%lld",&a,&b);
		p=(double)b*log10(a*1.0);
		p-=(int)p;
		//printf("%lf\n",p);
		ans1=pow(10.0,p);
		ans=qc(a,b);
		printf("Case %d: %d %03d\n",i,(int)(ans1*100),ans);
	} 
	return 0;
} 

猜你喜欢

转载自blog.csdn.net/qq_42279796/article/details/88357717