softmax层

https://www.cnblogs.com/nopassword/p/8192474.html

在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。 

首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,就是取所有给定的数字的最大值。

另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率。
 

è¿éåå¾çæè¿°

这张图的等号左边部分就是全连接层做的事,W是全连接层的参数,我们也称为权值,X是全连接层的输入,也就是特征。从图上可以看出特征X是N*1的向量,这是怎么得到的呢?这个特征就是由全连接层前面多个卷积层和池化层处理后得到的,假设全连接层前面连接的是一个卷积层,这个卷积层的输出是100个特征(也就是我们常说的feature map的channel为100),每个特征的大小是4*4,那么在将这些特征输入给全连接层之前会将这些特征flat成N*1的向量(这个时候N就是100*4*4=1600)。解释完X,再来看W,W是全连接层的参数,是个T*N的矩阵,这个N和X的N对应,T表示类别数,比如你是7分类,那么T就是7。我们所说的训练一个网络,对于全连接层而言就是寻找最合适的W矩阵。因此全连接层就是执行WX得到一个T*1的向量(也就是图中的logits[T*1]),这个向量里面的每个数都没有大小限制的,也就是从负无穷大到正无穷大。然后如果你是多分类问题,一般会在全连接层后面接一个softmax层,这个softmax的输入是T*1的向量,输出也是T*1的向量(也就是图中的prob[T*1],这个向量的每个值表示这个样本属于每个类的概率),只不过输出的向量的每个值的大小范围为0到1。

现在你知道softmax的输出向量是什么意思了,就是概率,该样本属于各个类的概率!

那么softmax执行了什么操作可以得到0到1的概率呢?先来看看softmax的公式

è¿éåå¾çæè¿°

 公式非常简单,前面说过softmax的输入是WX(为TX1的向量),假设模型的输入样本是I,讨论一个3分类问题(类别用1,2,3表示),样本I的真实类别是2,那么这个样本I经过网络所有层到达softmax层之前就得到了WX,也就是说WX是一个3*1的向量,那么上面公式中的aj就表示这个3*1的向量中的第j个值(最后会得到S1,S2,S3);而分母中的ak则表示3*1的向量中的3个值,所以会有个求和符号(这里求和是k从1到T,T和上面图中的T是对应相等的,也就是类别数的意思,j的范围也是1到T)。因为e^x恒大于0,所以分子永远是正数,分母又是多个正数的和,所以分母也肯定是正数,因此Sj是正数,而且范围是(0,1)。如果现在不是在训练模型,而是在测试模型,那么当一个样本经过softmax层并输出一个T*1的向量时,就会取这个向量中值最大的那个数的index作为这个样本的预测标签。

因此我们训练全连接层的W的目标就是使得其输出的WX在经过softmax层计算后其对应于真实标签的预测概率要最高。

举个例子:假设你的WX=[3,1,-3],给一个图,这个图比较清晰地告诉大家softmax是怎么计算的。

è¿éåå¾çæè¿°

那么经过softmax层后就会得到[0.88,0.12,0],这三个数字表示这个样本属于第1,2,3类的概率分别是0.88,0.12,0。 

注意:此处的e,是自然对数函数的底数,是一个数学常数,数值约为e ≈ 2.71828,其中一种定义方式为:

上图的计算过程

import math
a=math.exp(3)
b=math.exp(1)
c=math.exp(-3)
he=a+b+c
z1=a/he
z2=b/he
z3=c/he
print(a,b,c)
#(20.085536923187668, 2.718281828459045, 0.049787068367863944)
print(z1,z2,z3)
#(0.878878242732151, 0.11894323591065209, 0.0021785213571970234)

猜你喜欢

转载自blog.csdn.net/weixin_38145317/article/details/89448988