2:pytorch进行分类及预测示例

官网的分类代码东西太多,很多功能用不上,于是对官网的代码进行了修改。

main()函数对训练模型;predict()函数对训练好的模型进行调用预测。

训练图像放在sku_train文件夹中,里面有子文件夹,这些子文件夹的名字分别为各个类,每个子文件夹下为各类的图像。

验证图像放在sku_val中,文件结构同上。

# -*- coding: utf-8 -*-

from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
import time
import os
import copy

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

data_dir = '/media/data/sku_for_classify2'
train_folder = os.path.join(data_dir, "sku_val")
val_folder = os.path.join(data_dir, "sku_val")


train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
        # transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
val_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
        # transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

train_dataset = datasets.ImageFolder(train_folder, train_transforms)
val_dataset = datasets.ImageFolder(val_folder, val_transforms)

train_dataloaders = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
val_dataloaders = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)

train_dataset_sizes = len(train_dataset)
val_dataset_sizes = len(val_dataset)
class_names = train_dataset.classes
print(train_dataset.class_to_idx)
#print(train_dataset.imgs)


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def accuracy(output, labels, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = labels.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(labels.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


def validate(val_loader, model, criterion):
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(val_loader):
            inputs = inputs.to(device)
            labels = labels.to(device)

            # compute output
            output = model(inputs)
            loss = criterion(output, labels)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, labels, topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(acc1[0], inputs.size(0))
            top5.update(acc5[0], inputs.size(0))

            if i % 500 == 0:
                print('Test: [{0}/{1}], '
                      'Loss(avg): {loss.val:.4f}({loss.avg:.4f}), '
                      'Top1 acc(avg): {top1.val:.3f}({top1.avg:.3f}), '
                      'Top5 acc(avg): {top5.val:.3f}({top5.avg:.3f})'.format(
                       i, len(val_loader), loss=losses,
                       top1=top1, top5=top5))
        print(' * Top1 avg_acc {top1.avg:.3f} , Top5 avg_acc {top5.avg:.3f}'
              .format(top1=top1, top5=top5))

    return top1.avg


def train(train_loader, model, criterion, optimizer, epoch, num_epochs):
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    for i, (inputs, labels) in enumerate(train_loader):
        # measure data loading time

        inputs = inputs.to(device)
        labels = labels.to(device)

        # compute output
        output = model(inputs)
        loss = criterion(output, labels)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, labels, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(acc1[0], inputs.size(0))
        top5.update(acc5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i % 50 == 0:
            print('Epoch: [{0}/{1}][{2}/{3}], '
                  'Loss(avg): {loss.val:.4f}({loss.avg:.4f}), '
                  'Top1 acc(avg): {top1.val:.3f}({top1.avg:.3f}), '
                  'Top5 acc(avg): {top5.val:.3f}({top5.avg:.3f})'.format(
                   epoch, num_epochs, i, len(train_loader),
                   loss=losses, top1=top1, top5=top5))


def main():
    if not os.path.exists('weights'):
        os.makedirs('weights')
    model = models.resnet18(pretrained=True)
    freeze_conv_layer = False
    if freeze_conv_layer:
        for param in model.parameters():  # freeze layers
            param.requires_grad = False
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, len(class_names))

    model = model.to(device)
    print(model)
    from torchsummary import summary
    summary(model, (3, 224, 224))
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    if freeze_conv_layer:
        optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)

    scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

    num_epochs = 25
    for epoch in range(num_epochs):
        scheduler.step()
        train(train_dataloaders, model, criterion, optimizer, epoch, num_epochs)
        acc = validate(val_dataloaders, model, criterion)
        torch.save(model.state_dict(), ('weights/Epoch{}_acc{:.2f}.pt'.format(epoch, acc)))

    return model


def predict():
    model = models.resnet18(pretrained=True)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, len(class_names))

    model = model.to(device)
    model.load_state_dict(torch.load('weights/Epoch4_acc98.91.pt'))
    model.eval()
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(val_dataloaders):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            print("batch %d" %i)
            for j in range(inputs.size()[0]):
                print("{} pred label:{}, true label:{}".format(len(preds), class_names[preds[j]], class_names[labels[j]]))


if __name__ == "__main__":
    main()
    # predict()

猜你喜欢

转载自blog.csdn.net/u010397980/article/details/86385383
今日推荐