计算机视觉对极几何之Triangulate(三角化)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011178262/article/details/86729887

求解空间点坐标

Triangulate in ORB-SLAM2

已知,两个视图下匹配点的 图像坐标 p 1 \boldsymbol{p}_1 p 2 \boldsymbol{p}_2 ,两个相机的相对位姿 T \boldsymbol{T} ,相机内参矩阵 K \boldsymbol{K} ,求 对应的三维点坐标 P \boldsymbol{P} ,其齐次坐标为 P ~ \tilde{\boldsymbol{P}}

两个视图的 投影矩阵 分别为

P 1 = K [ I 3 × 3 0 3 × 1 ] , P 1 R 3 × 4 P 2 = K [ R 3 × 3 t 3 × 1 ] , P 2 R 3 × 4 \boldsymbol{P}_1 = \boldsymbol{K} \cdot [\boldsymbol{I}_{3 \times 3} \quad \mathbf{0}_{3 \times 1}], \quad \boldsymbol{P}_1 \in \mathbb{R}^{3 \times 4} \\ \boldsymbol{P}_2 = \boldsymbol{K} \cdot [ \boldsymbol{R}_{3 \times 3} \quad \boldsymbol{t}_{3 \times 1} ], \quad \boldsymbol{P}_2 \in \mathbb{R}^{3 \times 4}

T = T 21 = [ R t ] R 3 × 4 \boldsymbol{T} = \boldsymbol{T}_{21} = [ \boldsymbol{R} \quad \boldsymbol{t} ] \in \mathbb{R}^{3 \times 4}

由于是齐次坐标的表示形式,使用叉乘消去齐次因子

p 1 ~ × ( P 1 P ~ ) = 0 p 2 ~ × ( P 2 P ~ ) = 0 \tilde{\boldsymbol{p}_1} \times (\boldsymbol{P}_1 \tilde{\boldsymbol{P}}) = \mathbf{0} \\ \tilde{\boldsymbol{p}_2} \times (\boldsymbol{P}_2 \tilde{\boldsymbol{P}}) = \mathbf{0}

P 1 \boldsymbol{P}_1 P 2 \boldsymbol{P}_2 按行展开(上标代表行索引)代入,对于第一视图有

[ 0 1 v 1 1 0 u 1 v 1 u 1 0 ] [ P 1 1 P ~ P 1 2 P ~ P 1 3 P ~ ] = 0 \begin{bmatrix} 0 & -1 & v_1 \\ 1 & 0 & -u_1 \\ -v_1 & u_1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{P}_1^1 \cdot \tilde{\boldsymbol{P}} \\ \boldsymbol{P}_1^2 \cdot \tilde{\boldsymbol{P}} \\ \boldsymbol{P}_1^3 \cdot \tilde{\boldsymbol{P}} \end{bmatrix} = \mathbf{0}

u 1 ( P 1 3 P ~ ) ( P 1 1 P ~ ) = 0 v 1 ( P 1 3 P ~ ) ( P 1 2 P ~ ) = 0 u 1 ( P 1 2 P ~ ) v 1 ( P 1 1 P ~ ) = 0 u_1 (\boldsymbol{P}_1^3 \cdot \tilde{\boldsymbol{P}}) - (\boldsymbol{P}_1^1 \cdot \tilde{\boldsymbol{P}}) = 0 \\ v_1 (\boldsymbol{P}_1^3 \cdot \tilde{\boldsymbol{P}}) - (\boldsymbol{P}_1^2 \cdot \tilde{\boldsymbol{P}}) = 0 \\ u_1 (\boldsymbol{P}_1^2 \cdot \tilde{\boldsymbol{P}}) - v_1 (\boldsymbol{P}_1^1 \cdot \tilde{\boldsymbol{P}}) = 0 \\

可见第三个式子可以由上两个式子线性表示,所以只需要取前连个式子即可

[ u 1 P 1 3 P 1 1 v 1 P 1 3 P 1 2 ] P ~ = 0 \begin{bmatrix} u_1 \boldsymbol{P}_1^3 - \boldsymbol{P}_1^1 \\ v_1 \boldsymbol{P}_1^3 - \boldsymbol{P}_1^2 \end{bmatrix} \cdot \tilde{\boldsymbol{P}} = \mathbf{0}

同样的,对于第二视图

[ u 2 P 2 3 P 2 1 v 2 P 2 3 P 2 2 ] P ~ = 0 \begin{bmatrix} u_2 \boldsymbol{P}_2^3 - \boldsymbol{P}_2^1 \\ v_2 \boldsymbol{P}_2^3 - \boldsymbol{P}_2^2 \end{bmatrix} \cdot \tilde{\boldsymbol{P}} = \mathbf{0}

组合起来

A 4 × 4 P ~ = [ u 1 P 1 3 P 1 1 v 1 P 1 3 P 1 2 u 2 P 2 3 P 2 1 v 2 P 2 3 P 2 2 ] P ~ = 0 \boldsymbol{A_{4 \times 4}} \cdot \tilde{\boldsymbol{P}} = \begin{bmatrix} u_1 \boldsymbol{P}_1^3 - \boldsymbol{P}_1^1 \\ v_1 \boldsymbol{P}_1^3 - \boldsymbol{P}_1^2 \\ u_2 \boldsymbol{P}_2^3 - \boldsymbol{P}_2^1 \\ v_2 \boldsymbol{P}_2^3 - \boldsymbol{P}_2^2 \end{bmatrix} \cdot \tilde{\boldsymbol{P}} = \mathbf{0}

求解 P \boldsymbol{P} 相当于解一个 线性最小二乘问题

SVD分解 A \boldsymbol{A}

SVD ( A ) = U Σ V T \text{SVD}(\boldsymbol{A}) = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T

方程的解为 A \boldsymbol{A} 最小奇异值 对应的 奇异矢量,即 齐次坐标

P ~ = ( X , Y , Z , W ) = V 3 \tilde{\boldsymbol{P}} = (X,Y,Z,W) = \boldsymbol{V}_3

最终, P \boldsymbol{P} (第一视图坐标系下三维坐标)为

P = ( X W , Y W , Z W ) \boldsymbol{P} = (\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W})

orbslam2_cg中示例代码

void Initializer::Triangulate(
  const cv::KeyPoint &kp1,
  const cv::KeyPoint &kp2,
  const cv::Mat &P1,
  const cv::Mat &P2,
  cv::Mat &x3D)
{
    cv::Mat A(4,4,CV_32F);

    A.row(0) = kp1.pt.x*P1.row(2)-P1.row(0);
    A.row(1) = kp1.pt.y*P1.row(2)-P1.row(1);
    A.row(2) = kp2.pt.x*P2.row(2)-P2.row(0);
    A.row(3) = kp2.pt.y*P2.row(2)-P2.row(1);

    cv::Mat u,w,vt;
    cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
    x3D = vt.row(3).t();
    x3D = x3D.rowRange(0,3)/x3D.at<float>(3);
}

Triangulate in PTAM

已知,两个视图下匹配点的 归一化平面(z=1)齐次坐标 p 1 \boldsymbol{p}_1 p 2 \boldsymbol{p}_2 ,两个相机的相对位姿 T \boldsymbol{T} ,求 对应的三维点坐标 P \boldsymbol{P} (第一视图坐标系下三维坐标),其齐次坐标为 P ~ \tilde{\boldsymbol{P}}

方程

p 1 × ( I 3 × 4 P ~ ) = 0 p 2 × ( T 21 P ~ ) = 0 \boldsymbol{p}_1 \times (\boldsymbol{I}_{3 \times 4} \cdot \tilde{\boldsymbol{P}}) = \mathbf{0} \\ \boldsymbol{p}_2 \times (\boldsymbol{T}_{21} \cdot \tilde{\boldsymbol{P}}) = \mathbf{0}

T = T 21 = [ R t ] R 3 × 4 \boldsymbol{T} = \boldsymbol{T}_{21} = [ \boldsymbol{R} \quad \boldsymbol{t} ] \in \mathbb{R}^{3 \times 4}

矩阵形式

A 6 × 4 P ~ = [ p 1 × I 3 × 4 p 2 × T 21 ] P ~ = 0 \boldsymbol{A_{6 \times 4}} \cdot \tilde{\boldsymbol{P}} = \begin{bmatrix} \boldsymbol{p}_1 \times \boldsymbol{I}_{3 \times 4} \\ \boldsymbol{p}_2 \times \boldsymbol{T}_{21} \end{bmatrix} \cdot \tilde{\boldsymbol{P}} = \mathbf{0}

求解 P \boldsymbol{P} 相当于解一个 线性最小二乘问题

SVD分解 A \boldsymbol{A}

SVD ( A ) = U Σ V T \text{SVD}(\boldsymbol{A}) = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T

方程的解为 A \boldsymbol{A} 最小奇异值 对应的 奇异矢量,即 齐次坐标

P ~ = ( X , Y , Z , W ) = V 3 \tilde{\boldsymbol{P}} = (X,Y,Z,W) = \boldsymbol{V}_3

最终, P \boldsymbol{P} (第一视图坐标系下三维坐标)为

P = ( X W , Y W , Z W ) \boldsymbol{P} = (\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W})

ptam_cg中示例代码Triangulate

Vector<3> MapMaker::Triangulate(
  SE3<> se3AfromB,
  const Vector<2> &v2A,
  const Vector<2> &v2B)
{
    Matrix<3,4> PDash;
    PDash.slice<0,0,3,3>() = se3AfromB.get_rotation().get_matrix();
    PDash.slice<0,3,3,1>() = se3AfromB.get_translation().as_col();

    Matrix<4> A;
    A[0][0] = -1.0; A[0][1] =  0.0; A[0][2] = v2B[0]; A[0][3] = 0.0;
    A[1][0] =  0.0; A[1][1] = -1.0; A[1][2] = v2B[1]; A[1][3] = 0.0;
    A[2] = v2A[0] * PDash[2] - PDash[0];
    A[3] = v2A[1] * PDash[2] - PDash[1];

    SVD<4,4> svd(A);
    Vector<4> v4Smallest = svd.get_VT()[3];
    if(v4Smallest[3] == 0.0)
        v4Smallest[3] = 0.00001;
    return project(v4Smallest);
}

ptam_cg中示例代码TriangulateNew

Vector<3> MapMaker::TriangulateNew(
  SE3<> se3AfromB,
  const Vector<2> &v2A,
  const Vector<2> &v2B)
{
    Vector<3> v3A = unproject(v2A);
    Vector<3> v3B = unproject(v2B);

    Matrix<3> m3A = TooN::Zeros;
    m3A[0][1] = -v3A[2];
    m3A[0][2] =  v3A[1];
    m3A[1][2] = -v3A[0];
    m3A[1][0] = -m3A[0][1];
    m3A[2][0] = -m3A[0][2];
    m3A[2][1] = -m3A[1][2];
    Matrix<3> m3B = TooN::Zeros;
    m3B[0][1] = -v3B[2];
    m3B[0][2] =  v3B[1];
    m3B[1][2] = -v3B[0];
    m3B[1][0] = -m3B[0][1];
    m3B[2][0] = -m3B[0][2];
    m3B[2][1] = -m3B[1][2];

    Matrix<3,4> m34AB;
    m34AB.slice<0,0,3,3>() = se3AfromB.get_rotation().get_matrix();
    m34AB.slice<0,3,3,1>() = se3AfromB.get_translation().as_col();

    SE3<> se3I;
    Matrix<3,4> m34I;
    m34I.slice<0,0,3,3>() = se3I.get_rotation().get_matrix();
    m34I.slice<0,3,3,1>() = se3I.get_translation().as_col();

    Matrix<3,4> PDashA = m3A * m34AB;
    Matrix<3,4> PDashB = m3B * m34I;

    Matrix<6,4> A;
    A.slice<0,0,3,4>() = PDashA;
    A.slice<3,0,3,4>() = PDashB;

    SVD<6,4> svd(A);
    Vector<4> v4Smallest = svd.get_VT()[3];
    if(v4Smallest[3] == 0.0)
        v4Smallest[3] = 0.00001;

    return project(v4Smallest);
}

求解空间点深度

已知,两个视图下匹配点的 归一化平面(z=1)齐次坐标 p 1 \boldsymbol{p}_1 p 2 \boldsymbol{p}_2 ,两个相机的相对位姿 T \boldsymbol{T} ,求解空间点深度 Z 1 Z_1 Z 2 Z_2

T = T 21 = [ R t ] R 3 × 4 \boldsymbol{T} = \boldsymbol{T}_{21} = [ \boldsymbol{R} \quad \boldsymbol{t} ] \in \mathbb{R}^{3 \times 4}

Z 2 p 2 = T 21 ( Z 1 p 1 ) = Z 1 R p 1 + t Z_2 \cdot \boldsymbol{p}_2 = \boldsymbol{T}_{21} \cdot ( Z_1 \cdot \boldsymbol{p}_1 ) = Z_1 \cdot \boldsymbol{R} \boldsymbol{p}_1 + \boldsymbol{t}

矩阵形式

[ p 2 R p 1 ] [ Z 2 Z 1 ] = t \begin{bmatrix} \boldsymbol{p}_2 &amp; -\boldsymbol{R} \boldsymbol{p}_1 \end{bmatrix} \cdot \begin{bmatrix} Z_2 \\ Z_1 \end{bmatrix} = \boldsymbol{t}

Triangulate in SVO

上式即 A x = b Ax=b 的形式,解该方程可以用 正规方程

A T A x = A T b A^T A x = A^T b

解得

x = ( A T A ) 1 A T b x = (A^TA)^{-1} A^T b

svo_cg中示例代码

bool depthFromTriangulation(
    const SE3& T_search_ref,
    const Vector3d& f_ref,
    const Vector3d& f_cur,
    double& depth)
{
  Matrix<double,3,2> A; A << T_search_ref.rotation_matrix() * f_ref, f_cur;
  const Matrix2d AtA = A.transpose() * A;
  if(AtA.determinant() < 0.000001)
    return false;
  const Vector2d depth2 =
    - AtA.inverse()* A.transpose() * T_search_ref.translation();
  depth = fabs(depth2[0]);
  return true;
}

Triangulate in REMODE

由于解向量是二维的,对上式采用 克莱默法则 求解:

[ p 2 R p 1 ] [ p 2 R p 1 ] [ Z 2 Z 1 ] = [ p 2 p 2 p 2 R p 1 p 2 R p 1 R p 1 R p 1 ] [ Z 2 Z 1 ] = t \begin{bmatrix} \boldsymbol{p}_2 \\ \boldsymbol{R} \boldsymbol{p}_1 \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_2 &amp; -\boldsymbol{R} \boldsymbol{p}_1 \end{bmatrix} \begin{bmatrix} Z_2 \\ Z_1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{p}_2 \boldsymbol{p}_2 &amp; -\boldsymbol{p}_2 \cdot \boldsymbol{R} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \cdot \boldsymbol{R} \boldsymbol{p}_1 &amp; -\boldsymbol{R} \boldsymbol{p}_1 \cdot \boldsymbol{R} \boldsymbol{p}_1 \end{bmatrix} \begin{bmatrix} Z_2 \\ Z_1 \end{bmatrix} = \boldsymbol{t}

REMODE中示例代码

// Returns 3D point in reference frame
// Non-linear formulation (ref. to the book 'Autonomous Mobile Robots')
__device__ __forceinline__
float3 triangulatenNonLin(
    const float3 &bearing_vector_ref,
    const float3 &bearing_vector_curr,
    const SE3<float> &T_ref_curr)
{
  const float3 t = T_ref_curr.getTranslation();
  float3 f2 = T_ref_curr.rotate(bearing_vector_curr);
  const float2 b = make_float2(dot(t, bearing_vector_ref),
                               dot(t, f2));
  float A[2*2];
  A[0] = dot(bearing_vector_ref, bearing_vector_ref);
  A[2] = dot(bearing_vector_ref, f2);
  A[1] = -A[2];
  A[3] = dot(-f2, f2);

  const float2 lambdavec = make_float2(A[3] * b.x - A[1] * b.y,
      -A[2] * b.x + A[0] * b.y) / (A[0] * A[3] - A[1] * A[2]);
  const float3 xm = lambdavec.x * bearing_vector_ref;
  const float3 xn = t + lambdavec.y * f2;
  return (xm + xn)/2.0f;
}

Reference

猜你喜欢

转载自blog.csdn.net/u011178262/article/details/86729887
今日推荐