题解:HAOI2011 Problem b【莫比乌斯反演】

题意
i = a b j = c d [ g c d ( i , j ) = = k ] 求\sum_{i=a}^b\sum_{j=c}^d [ gcd(i,j)==k ]

对于这个题目,我们可以运用一下容斥原理

如果说 f ( n , m ) = i = 1 n j = 1 m [ g c d ( i , j ) = = d ] f(n,m)=\sum_{i=1}^n\sum_{j=1}^m [ gcd(i,j)==d ]

那么运用容斥原理,我们可以把答案表示成这样:

a n s = f ( b , d ) f ( a 1 , d ) f ( b , c 1 ) + f ( a 1 , c 1 ) ans=f(b,d)-f(a-1,d)-f(b,c-1)+f(a-1,c-1)
然后把 f ( a , b ) f(a,b) 化回去
由于莫比乌斯反演的常见套路(详见POI2007 ZAP-Queries),我们得知
f ( n , m ) = i = 1 min ( n d , m d ) μ ( i ) n d i m d i f(n,m)=\sum_{i=1}^{\min({\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}}\rfloor)}\mu(i)\frac{\lfloor\frac{n}{d}\rfloor}{i}\frac{\lfloor\frac{m}{d}\rfloor}{i}
然后用数论分块处理一下把复杂度降到 n \sqrt{n}

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define re register
#define gc getchar()
#define ll long long
inline int read()
{
	re int x(0); re char ch(gc);
	while(ch>'9'||ch<'0') ch=gc;
	while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
	return x;
}
const int N=50050;
int mu[N],pri[N],sum[N],vis[N],cnt;
void get_mu(int n)
{
	mu[1]=1;
	for(int i=2;i<=n;++i)
	{
		if(!vis[i])
			mu[i]=-1,pri[++cnt]=i;
		for(int j=1;j<=cnt&&i*pri[j]<=n;++j)
		{
			vis[i*pri[j]]=1;
			if(i%pri[j]==0) break;
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i<=n;++i) sum[i]=sum[i-1]+mu[i];
}
int F(int a,int b,int d)
{
	int n=min(a,b),ans=0;
	for(int l=1,r;l<=n;l=r+1)
	{
		r=min(a/(a/l),b/(b/l));
		ans+=(a/(l*d))*(b/(l*d))*(sum[r]-sum[l-1]);
	}
	return ans;
}
void work()
{
	int a=read(),b=read(),c=read(),d=read(),k=read();
	int ans=F(b,d,k)-F(a-1,d,k)-F(b,c-1,k)+F(a-1,c-1,k);
	cout<<ans<<endl;
}
int main()
{
	int T=read();
	get_mu(50050);
	while(T--) work();
	return 0;
}

猜你喜欢

转载自blog.csdn.net/weixin_43464026/article/details/88550638