Harvard NLP The Annotated Transformer 学习之代码

版权声明:王家林大咖2018年新书《SPARK大数据商业实战三部曲》清华大学出版,微信公众号:从零起步学习人工智能 https://blog.csdn.net/duan_zhihua/article/details/87897585

Harvard NLP The Annotated Transformer 学习代码:

  • The Annotated Transformer 论文:

  • 注意力模型:

                                                    

  • 多注意力模型结构:

     

  •     Transformer 编码器、解码器结构:  

    Transformer 代码如下: 

# -*- coding: utf-8 -*-
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")

class EncoderDecoder(nn.Module):
    """
    标准编码器-解码器结构,本案例及其他各模型的基础。
    """
    def __init__(self,encoder,decoder,src_embed,tgt_embed,generator):
        super(EncoderDecoder,self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator =generator

    def forward(self,src,tgt,src_mask,tgt_mask):
        "处理屏蔽的源序列与目标序列"
        return self.decode(self.encode(src,src_mask),src_mask,tgt,tgt_mask)

    def encode(self,src,src_mask):
        return self.encoder(self.src_embed(src),src_mask)

    def decode(self,memory,src_mask,tgt,tgt_mask):
        return self.decoder(self.tgt_embed(tgt),memory,src_mask,tgt_mask)

class Generator(nn.Module):
    "定义标准linear + softmax 步骤"
    def __init__(self,d_model,vocab):
        super(Generator,self).__init__()
        self.proj = nn.Linear(d_model,vocab)
    
    def forward(self,x):
        return F.log_softmax(self.proj(x),dim =-1)

# =============================================================================
#        
# Encoder 编码器
#
# =============================================================================

#论文中的编码器由N=6个相同层的堆栈组成
def clones(module,N):
    "生成N个相同的层"
    return nn.ModuleList([copy.deepcopy(module)  for _ in range(N) ])
        
class Encoder(nn.Module):
    "核心编码器是N层堆叠"
    def __init__(self,layer,N):
        super(Encoder,self).__init__()
        self.layers=clones(layer,N)
        self.norm = LayerNorm(layer.size) 
    
    def forward(self,x,mask):
        "依次将输入的数据(及屏蔽数据)通过每个层"
        for layer in self.layers:
            x=layer(x,mask)
        return self.norm(x)

#在两个子层中的每一个子层使用一个残差连接,然后进行层归一化
class LayerNorm(nn.Module):
    "构建层归一化模块"
    def __init__(self,features,eps=1e-6):
        super(LayerNorm,self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps=eps
        
    def forward(self,x):
        mean =x.mean(-1,keepdim=True)
        std = x.std(-1,keepdim=True)
        return self.a_2*(x - mean ) /(std + self.eps)+self.b_2
        
# 每一个子层的输出为 LayerNorm(x+Sublayer(x)),其中 Sublayer(x) 是子层自己实现的函数,在子层输入和归一化之前完成每一个子层输出的dropout。
# 为了实现残差连接,模型中的所有子层以及嵌入层的输出维度都是dmodel=512。        
class SublayerConnection(nn.Module):
    """
    层归一化之后的残差连接。
    注意:为了简化代码,归一化是第一个,而不是最后一个。
    """

    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self,x,sublayer):
        "将残差连接应用于相同大小的任何子层。"
        return x+self.dropout(sublayer(self.norm(x)))
    
#每层有两个子层:第一层是多头自注意机制,第二层是一个简单的、位置导向的、全连接的前馈网络。
class EncoderLayer(nn.Module):
    "编码器由以下的自注意力和前馈网络组成"
    def __init__(self,size,self_attn,feed_forward,dropout):
        super(EncoderLayer,self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward 
        self.sublayer = clones(SublayerConnection(size,dropout),2)
        self.size =size
        
    def forward(self,x,mask):
        "按照论文中的图1(左)的方式进行连接"
        x = self.sublayer[0](x,lambda x:self.self_attn(x,x,x,mask))
        return self.sublayer[1](x,self.feed_forward)
        
        
# =============================================================================
#        
# Decoder 解码器
#
# =============================================================================
#解码器也由一个N=6个相同层的堆栈组成。
class Decoder(nn.Module):
    "带屏蔽的通用N层解码器"
    def __init__(self,layer,N):
        super(Decoder,self).__init__()
        self.layers = clones(layer,N)
        self.norm = LayerNorm(layer.size)
    
    def forward(self,x,memory,src_mask,tgt_mask):
        for layer in self.layers:
            x =layer(x,memory,src_mask,tgt_mask)
        return self.norm(x)

#在每个编码器层中的两个子层外,解码器还插入第三个子层,该子层在编码器堆栈的输出上执行多头关注。与编码器类似,使用残差连接解码器的每个子层,然后进行层归一化。
class DecoderLayer(nn.Module):
    "解码器由以下的自注意力、源注意力和前馈网络组成"    
    def __init__(self,size,self_attn,src_attn,feed_forward,dropout):
        super(DecoderLayer,self).__init__()
        self.size = size 
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size,dropout),3)
        
    def forward (self,x,memory,src_mask,tgt_mask):
        "按照论文中的图1(右)的方式进行连接"
        m = memory
        x = self.sublayer[0](x,lambda x:self.self_attn(x,x,x,tgt_mask))
        x = self.sublayer[1](x,lambda x:self.src_attn(x,m,m,src_mask))
        return self.sublayer[2](x,self.feed_forward)


def subsequent_mask(size):
    "屏蔽后续位置"
    attn_shape = (1,size,size)
    subsequent_mask = np.triu(np.ones(attn_shape),k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0
            
plt.figure(figsize=(5,5))
plt.imshow(subsequent_mask(20)[0])


# =============================================================================
#        
# Attention 注意力
#
# =============================================================================
# 公式:Attention(Q,K,V)=softmax(Q K^T /√dk ) V
def attention(query,key,value,mask=None,dropout=None):
    "计算'可缩放点乘注意力'"
    d_k = query.size(-1)
    scores = torch.matmul(query,key.transpose(-2,-1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores,dim = -1)
    if dropout is  not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn,value),p_attn

    
#多头注意力模型
class MultiHeadedAttention(nn.Module):
    def __init__(self,h,d_model, dropout=0.1):
        "设置模型大小和注意力头部数量"
        super(MultiHeadedAttention,self).__init__()
        assert d_model % h ==0
        #假设 d_v 等于 d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model,d_model),4) # 对应 Q,K,V 3次线性变换 + 最终的1次线性变换  
        self.attn =None
        self.dropout = nn.Dropout(p=dropout)
    
    def forward(self,query,key,value,mask=None):
        "实现论文中的第2张图"
        if mask is not None:
            #同样的屏蔽适用于所有h型头
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        #1)批量执行所有线性变换 d_model => h x d_k 
        query,key,value = [ l(x).view(nbatches,-1,self.h,self.d_k).transpose(1,2)    
                            for l,x in zip (self.linears,(query,key,value))]
        
        #2)将注意力集中在批量的所有投射向量上
        x,self.attn =attention(query,key,value,mask=mask,dropout=self.dropout)
        
        #3)使用view方法做Concat然后做最终的线性变换。
        x = x.transpose(1,2).contiguous().view(nbatches,-1,self.h*self.d_k)
        
        return self.linears[-1](x)
        


# =============================================================================
#        
# Position-wise Feed-Forward Networks 位置前馈网络
#
# =============================================================================
#计算公式:FFN(x)=max(0,xW1+b1)W2+b2  论文中 输入、输出的维度dmodel=512, 内部隐藏层的维度 dff=2048.
class PositionwiseFeedForward(nn.Module):
    "实现FFN方程"
    def __init__(self,d_model,d_ff,dropout=0.1):
        super(PositionwiseFeedForward,self).__init__()
        self.w_1 = nn.Linear(d_model,d_ff)
        self.w_2 = nn.Linear(d_ff,d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self,x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))
        
        
# =============================================================================
#        
# Embeddings and Softmax : 嵌入和SoftMax
#
# =============================================================================
class Embeddings(nn.Module):
    def __init__(self,d_model,vocab):
        super(Embeddings,self).__init__()
        self.lut = nn.Embedding(vocab,d_model)
        self.d_model = d_model
    
    def forward(self,x):
        return self.lut(x.long()) * math.sqrt(self.d_model)
        
# =============================================================================
#        
# Positional Encoding : 位置编码
#
# =============================================================================
class PositionalEncoding(nn.Module):
    "实现位置编码函数"
    def __init__(self,d_model,dropout,max_len=5000):
        super(PositionalEncoding,self).__init__()
        self.dropout = nn.Dropout(p=dropout)
    
        #计算位置编码
        pe = torch.zeros(max_len,d_model)
        position = torch.arange(0,max_len).unsqueeze(1).float()
        div_term = torch.exp((torch.arange(0,d_model,2)*-math.log(10000) /d_model).float())
        
        pe[:,0::2] = torch.sin(position * div_term)
        pe[:,1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe',pe)
    
    def forward (self,x):
        x =x +Variable(self.pe[:,:x.size(1)],requires_grad =False)
        return self.dropout(x)

#位置编码将根据位置添加一个正弦波,波的频率和偏移对于每个维度都是不同的。
plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 10 , 20)))
plt.scatter(np.arange(10 ), y[0, :,1].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])
     
        
# =============================================================================
#        
# Full Model : 整体模型
#
# =============================================================================
#定义一个函数,它接受超参数并生成完整的模型。
def make_model(src_vocab,tgt_vocab,N=6,d_model=512,d_ff=2048,h=8,dropout=0.1):
    "从超参数构造模型"
    c = copy.deepcopy
    attn = MultiHeadedAttention(h,d_model)
    ff = PositionwiseFeedForward(d_model,d_ff,dropout)
    position = PositionalEncoding(d_model,dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
            
    #从代码来看,使用 Glorot / fan_avg初始化参数很重要。
    for p in model.parameters():
        if p.dim()>1:
            nn.init.xavier_uniform_(p)
    return model


#小例子模型
tmp_model = make_model(10, 10, 2)  

print(tmp_model)
# =============================================================================
#        
# Training : 模型训练
#
# =============================================================================

#Batches and Masking
class Batch:
    "此对象用于在训练时进行已屏蔽的批数据处理"
    def __init__(self,src,trg=None,pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
            
        
    @staticmethod
    def make_std_mask(tgt,pad):
        "创建一个mask来隐藏填充和将来的单词"
        tgt_mask = (tgt != pad ).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
                subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

#接下来,我们创建一个通用的训练和评分功能来跟踪损失。我们传递一个通用的损失计算函数,该函数还处理参数更新。

def run_epoch(data_iter,model,loss_compute):
    "标准的训练及日志函数"
    start = time.time()
    total_tokens = 0
    total_loss = 0.0
    tokens = 0
    for i,batch in enumerate(data_iter):
        out = model.forward(batch.src,batch.trg,
                            batch.src_mask,batch.trg_mask)
        loss = loss_compute(out,batch.trg_y,batch.ntokens)
        #print("ok",loss)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed =time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                  (i,loss /batch.ntokens,tokens /elapsed))
            start =time.time()
            tokens = 0
        #print("ok",total_loss,total_tokens)
    return (total_loss /total_tokens).numpy()

#我们将使用torch 文本进行批处理。在TorchText函数中创建批次,确保填充最大批次大小不超过阈值(如果我们有8个GPU,则为25000)。
global max_src_in_batch,max_tgt_in_batch
def batch_size_fn(new,count,sofar):
    "持续扩大批处理并计算标识+填充的总数" 
    global max_src_in_batch,max_tgt_in_batch
    if count == 1:
        max_src_in_batch = 0
        max_tgt_in_batch = 0
    max_src_in_batch = max(max_src_in_batch,len(new.src))
    max_tgt_in_batch = max(max_tgt_in_batch,len(new.src) + 2)
    src_elements = count * max_src_in_batch
    tgt_elements = count * max_tgt_in_batch
    return max(src_elements,tgt_elements)


# =============================================================================
#        
# Optimizer : 优化器 使用Adam优化器
#
# =============================================================================

class NoamOpt:
    "实现学习率的优化包装器"
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "实现学习率 lrate"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))
        
def get_std_opt(model):
    return NoamOpt(model.src_embed[0].d_model, 2, 4000,
            torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
#该模型的曲线示例适用于不同的模型尺寸和优化超参数。
#lrate超参数的三个设置    

opts = [NoamOpt(512, 1, 4000, None), 
        NoamOpt(512, 1, 8000, None),
        NoamOpt(256, 1, 4000, None)]
plt.figure()
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
plt.legend(["512:4000", "512:8000", "256:4000"])
None

# =============================================================================
#        
# Regularization : 正则化
#
# =============================================================================
class LabelSmoothing(nn.Module):
    "实现平滑标签"
    def __init__(self,size,padding_idx,smoothing =0.0):
        super(LabelSmoothing,self).__init__()
        self.criterion = nn.KLDivLoss(size_average = False)
        self.padding_idx = padding_idx
        self.confidence = 1.0 -smoothing
        self.smoothing =smoothing
        self.size = size
        self.true_dist =None
        
    def forward(self,x,target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing /(self.size -2 ))
        true_dist.scatter_(1,target.long().data.unsqueeze(1),self.confidence)
        true_dist[:,self.padding_idx] = 0
        mask =torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0,mask.squeeze(),0.0)
        self.true_dist = true_dist
        return self.criterion(x,Variable(true_dist,requires_grad =False))                 


#例子 label smoothing.
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
                             [0, 0.2, 0.7, 0.1, 0], 
                             [0, 0.2, 0.7, 0.1, 0]])
v = crit(Variable(predict.log()), 
         Variable(torch.LongTensor([2, 1, 0])))

# 显示预期的目标分布。
plt.figure( )
plt.imshow(crit.true_dist)
None
#如果模型对给定的选择非常有信心,标签平滑实际上开始惩罚模型
crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
    d = x + 3 * 1
    predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
                                 ])
    #print(predict)
    return crit(Variable(predict.log()),
                 Variable(torch.LongTensor([1]))).item()
plt.figure( )
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
None

#第一个例子
def data_gen(V,batch,nbatches):
    "为src-tgt复制任务生成随机数据"
    for i in range(nbatches):
        data = torch.from_numpy(np.random.randint(1,V,size = (batch,10)))
        data[:,0] =1
        src = Variable(data,requires_grad = False)
        tgt = Variable(data,requires_grad = False)
        yield Batch(src,tgt,0)

#损失计算
class SimpleLossCompute:
    "一个简单的损失计算和训练函数"
    def __init__(self,generator,criterion,opt =None):
        self.generator = generator
        self.criterion = criterion
        self.opt = opt
        
    def __call__(self,x,y,norm):
        x =self.generator(x)
        loss = self.criterion(x.contiguous().view(-1,x.size(-1)),y.contiguous().view(-1)) /norm
        loss.backward()
        if self.opt is not None:
            self.opt.step()
            self.opt.optimizer.zero_grad()
        return loss.data.item()*norm 

#贪婪解码
V =11
criterion =LabelSmoothing(size =V,padding_idx =0,smoothing =0.0)
model =make_model(V,V,N=2) 
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400,
        torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))


for epoch in range(10):
    model.train()
    run_epoch(data_gen(V,30,20),model,
              SimpleLossCompute(model.generator,criterion,model_opt))
    model.eval()
    print(run_epoch(data_gen(V, 30, 5), model, 
                    SimpleLossCompute(model.generator, criterion, None)))



#为了简单起见,此代码使用贪婪解码来预测翻译。
def greedy_decode(model, src, src_mask, max_len, start_symbol):
    memory = model.encode(src, src_mask)
    ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
    for i in range(max_len-1):
        out = model.decode(memory, src_mask, 
                           Variable(ys), 
                           Variable(subsequent_mask(ys.size(1))
                                    .type_as(src.data)))
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim = 1)
        next_word = next_word.data[0]
        ys = torch.cat([ys, 
                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
    return ys

model.eval()
src = Variable(torch.LongTensor([[1,2,3,4,5,6,7,8,9,10]]) )
src_mask = Variable(torch.ones(1, 1, 10) )
print(greedy_decode(model, src, src_mask, max_len=10, start_symbol=1))      










https://github.com/duanzhihua/annotated-transformer

猜你喜欢

转载自blog.csdn.net/duan_zhihua/article/details/87897585