misc类设备

1:什么是misc驱动模型

Linux包含了许多的设备驱动类型,而不管分类有多细,总会有些漏网的,这就是我们经常说到的“其他的”等等。
在Linux里面,把无法归类的五花八门的设备定义为混杂设备(用miscdevice结构体来描述)。Linux/内核所提供的miscdevice有很强的包容性。如NVRAM,看门狗,DS1286等实时时钟,字符LCD,AMD 768随机数发生器。

miscdevice共享一个主设备号MISC_MAJOR(10),但此设备号不同,所有的miscdevice设备形成一个链表,对设备访问时内核根据次设备号查找对应的 miscdevice设备,然后调用其中的file_operations结构体中注册的文件操作接口进程操作。

2:为什么要有misc驱动模型

第一,节省主设备号:
使用普通字符设备,不管该驱动的主设备号是静态还是动态分配,都会消耗一个主设备号,这太浪费了。而且如果你的这个驱动最终会提交到内核主线版本上的话,需要申请一个专门的主设备号,这也麻烦。
如果使用misc驱动的话就好多了。因为内核中已经为misc驱动分配了一个主设备号。当系统中拥有多个misc设备驱动时,那么它们的主设备号相同,而用子设备号来区分它们。

第二,使用简单:
有时候驱动开发人员需要开发一个功能较简单的字符设备驱动,导出接口让用户空间程序方便地控制硬件,只需要使用misc子系统提供的接口即可快速地创建一个misc设备驱动。
当使用普通的字符设备驱动时,如果开发人员需要导出操作接口给用户空间的话,需要自己去注册字符驱动,并创建字符设备class以自动在/dev下生成设备节点,相对麻烦一点。而misc驱动则无需考虑这些,基本上只需要把一些基本信息通过struct miscdevice交给misc_register()去处理即可。

本质上misc驱动也是一个字符设备驱动,可能相对特殊一点而已。在drivers/char/misc.c的misc驱动初始化函数misc_init()中实际上使用了MISC_MAJOR(主设备号为10)并调用register_chrdev()去注册了一个字符设备驱动。同时也创建了一个misc_class,使得最后可自动在/dev下自动生成一个主设备号为10的字符设备。总的来讲,如果使用misc驱动可以满足要求的话,那么这可以为开发人员剩下不少麻烦。

所以说misc驱动模型让我们很简单的在底层实现了字符设备驱动,并且在在应用层给予了一定的接口,节省了主设备号;其实就相当于一个杂货铺,乱七八糟的字符设备驱动模型都可以往里面

堆。

3:驱动模型代码实现:
  misc驱动的实现代码在driver/char/misc.c目录下,

misc_init函数:

static int __init misc_init(void)
{
	int err;

#ifdef CONFIG_PROC_FS
	proc_create("misc", 0, NULL, &misc_proc_fops);
#endif
	misc_class = class_create(THIS_MODULE, "misc");
	err = PTR_ERR(misc_class);
	if (IS_ERR(misc_class))
		goto fail_remove;

	err = -EIO;
	if (register_chrdev(MISC_MAJOR,"misc",&misc_fops))
		goto fail_printk;
	misc_class->devnode = misc_devnode;
	return 0;

fail_printk:
	printk("unable to get major %d for misc devices\n", MISC_MAJOR);
	class_destroy(misc_class);
fail_remove:
	remove_proc_entry("misc", NULL);
	return err;
}
subsys_initcall(misc_init);

misc_init

  class_create 创建了一个名为misc的类

  register_chrdev(MISC_MAJOR,"misc",&misc_fops)  使用register_chrdev注册了一个字符设备驱动,主设备号为MISC_MAJOR(10);

static const struct file_operations misc_fops = {
	.owner		= THIS_MODULE,
	.open		= misc_open,
};

misc类型驱动提供了一个统一.open函数misc_open函数;

misc_open 这个函数的实质是通过inode找到misc类的次设备号minor,然后在通过次设备号和misc链表的次设备号进行匹配,匹配好以后取出

static int misc_open(struct inode * inode, struct file * file)
{
	int minor = iminor(inode);
	struct miscdevice *c;
	int err = -ENODEV;
	const struct file_operations *old_fops, *new_fops = NULL;

	mutex_lock(&misc_mtx);
	
	list_for_each_entry(c, &misc_list, list) {
		if (c->minor == minor) {
			new_fops = fops_get(c->fops);		
			break;
		}
	}
		
	if (!new_fops) {
		mutex_unlock(&misc_mtx);
		request_module("char-major-%d-%d", MISC_MAJOR, minor);
		mutex_lock(&misc_mtx);

		list_for_each_entry(c, &misc_list, list) {
			if (c->minor == minor) {
				new_fops = fops_get(c->fops);
				break;
			}
		}
		if (!new_fops)
			goto fail;
	}

	err = 0;
	old_fops = file->f_op;
	file->f_op = new_fops;
	if (file->f_op->open) {
		file->private_data = c;
		err=file->f_op->open(inode,file);
		if (err) {
			fops_put(file->f_op);
			file->f_op = fops_get(old_fops);
		}
	}
	fops_put(old_fops);
fail:
	mutex_unlock(&misc_mtx);
	return err;
}

在include/linux/miscdevice.h中定义了miscdevice  结构体,所有的misc模型驱动设备;都在内核围护的一个misc_list链表中;

内核维护一个misc_list链表,misc设备在misc_register注册的时候链接到这个链表,在misc_deregister中解除链接。

struct miscdevice  {
	int minor;
	const char *name;
	const struct file_operations *fops;
	struct list_head list;
	struct device *parent;
	struct device *this_device;
	const char *nodename;
	mode_t mode;
};

misc_register函数

int misc_register(struct miscdevice * misc)
{
	struct miscdevice *c;
	dev_t dev;
	int err = 0;

	INIT_LIST_HEAD(&misc->list);

	mutex_lock(&misc_mtx);
	list_for_each_entry(c, &misc_list, list) {
		if (c->minor == misc->minor) {
			mutex_unlock(&misc_mtx);
			return -EBUSY;
		}
	}

	if (misc->minor == MISC_DYNAMIC_MINOR) {
		int i = find_first_zero_bit(misc_minors, DYNAMIC_MINORS);
		if (i >= DYNAMIC_MINORS) {
			mutex_unlock(&misc_mtx);
			return -EBUSY;
		}
		misc->minor = DYNAMIC_MINORS - i - 1;
		set_bit(i, misc_minors);
	}

	dev = MKDEV(MISC_MAJOR, misc->minor);

	misc->this_device = device_create(misc_class, misc->parent, dev,
					  misc, "%s", misc->name);
	if (IS_ERR(misc->this_device)) {
		int i = DYNAMIC_MINORS - misc->minor - 1;
		if (i < DYNAMIC_MINORS && i >= 0)
			clear_bit(i, misc_minors);
		err = PTR_ERR(misc->this_device);
		goto out;
	}

	/*
	 * Add it to the front, so that later devices can "override"
	 * earlier defaults
	 */
	list_add(&misc->list, &misc_list);
 out:
	mutex_unlock(&misc_mtx);
	return err;
}

misc_register

  misc->this_device = device_create(misc_class, misc->parent, dev, misc, "%s", misc->name);

 调用这个函数来初创建设备;

misc_deregister函数来取消注册;

int misc_deregister(struct miscdevice *misc)
{
	int i = DYNAMIC_MINORS - misc->minor - 1;

	if (list_empty(&misc->list))
		return -EINVAL;

	mutex_lock(&misc_mtx);
	list_del(&misc->list);
	device_destroy(misc_class, MKDEV(MISC_MAJOR, misc->minor));
	if (i < DYNAMIC_MINORS && i >= 0)
		clear_bit(i, misc_minors);
	mutex_unlock(&misc_mtx);
	return 0;
}

4:代码实战:

拿一段x210_buzzer的代码进行分析

module_init(dev_init);

module_exit(dev_exit);

看一下dev_init函数(首先初始化好dev_fops结构体、misc结构体)

static struct file_operations dev_fops = {
    .owner   =   THIS_MODULE,
    .open    =   x210_pwm_open,
    .release =   x210_pwm_close, 
    .ioctl   =   x210_pwm_ioctl,
};

static struct miscdevice misc = {
	.minor = MISC_DYNAMIC_MINOR,
	.name = DEVICE_NAME,
	.fops = &dev_fops,
};
static int __init dev_init(void)
{
	int ret;

	init_MUTEX(&lock);
	ret = misc_register(&misc);
	
	/* GPD0_2 (PWMTOUT2) */
	ret = gpio_request(S5PV210_GPD0(2), "GPD0");
	if(ret)
		printk("buzzer-x210: request gpio GPD0(2) fail");
		
	s3c_gpio_setpull(S5PV210_GPD0(2), S3C_GPIO_PULL_UP);
	s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(1));
	gpio_set_value(S5PV210_GPD0(2), 0);

	printk ("x210 "DEVICE_NAME" initialized\n");
    	return ret;
}

这个函数中做了三件事:

  init_MUTEX       初始化信号量

  misc_register    注册驱动

  gpio_request    申请gpio

这样misc设备驱动已经写好了,在补充一下具体fops中的硬件的操作方法即可;

--------------------------------------------------------------------------------------------------

三个函数分别为:x210_pwm_close、x210_pwm_open、x210_pwm_ioctl

x210_pwm_open,尝试lock如果成功则返回0,表示可以使用,如果不成功则返回EBUSY

static int x210_pwm_open(struct inode *inode, struct file *file)
{
	if (!down_trylock(&lock))
		return 0;
	else
		return -EBUSY;
	
}

x210_pwm_close,解锁返回0

static int x210_pwm_close(struct inode *inode, struct file *file)
{
	up(&lock);
	return 0;
}

最关键的是x210_pwm_ioctl函数

这个函数是真正的提供给应用层操作buzzer的函数;

函数原型:

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

使用内核的ioctl函数可以对很多驱动程序的参数进行设置,如串口波特率、buzzer的频率等等;

这个函数主要的两个参数是:unsigned int, unsigned long

unsigned int传的是cmd,unsigned long 传的是参数;

当命令为PWM_IOCTL_SET_FREQ时,调用PWM_Set_Freq函数设置频率

当命令为PWM_IOCTL_STOP时,调用PWM_Stop函数;

static int x210_pwm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
	switch (cmd) 
	{
		case PWM_IOCTL_SET_FREQ:
			printk("PWM_IOCTL_SET_FREQ:\r\n");
			if (arg == 0)
				return -EINVAL;
			PWM_Set_Freq(arg);
			break;

		case PWM_IOCTL_STOP:
		default:
			printk("PWM_IOCTL_STOP:\r\n");
			PWM_Stop();
			break;
	}

	return 0;
}
void PWM_Stop( void )
{
	//将GPD0_2设置为input
	s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(0));	
}

pwm_set_freq函数是真正的操作硬件的函数

static void PWM_Set_Freq( unsigned long freq )
{
	unsigned long tcon;
	unsigned long tcnt;
	unsigned long tcfg1;

	struct clk *clk_p;
	unsigned long pclk;

	//unsigned tmp;
	
	//设置GPD0_2为PWM输出
	s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(2));

	tcon = __raw_readl(S3C2410_TCON);
	tcfg1 = __raw_readl(S3C2410_TCFG1);

	//mux = 1/16
	tcfg1 &= ~(0xf<<8);
	tcfg1 |= (0x4<<8);
	__raw_writel(tcfg1, S3C2410_TCFG1);
	
	clk_p = clk_get(NULL, "pclk");
	pclk  = clk_get_rate(clk_p);

	tcnt  = (pclk/16/16)/freq;
	
	__raw_writel(tcnt, S3C2410_TCNTB(2));
	__raw_writel(tcnt/2, S3C2410_TCMPB(2));//占空比为50%

	tcon &= ~(0xf<<12);
	tcon |= (0xb<<12);		//disable deadzone, auto-reload, inv-off, update TCNTB0&TCMPB0, start timer 0
	__raw_writel(tcon, S3C2410_TCON);
	
	tcon &= ~(2<<12);			//clear manual update bit
	__raw_writel(tcon, S3C2410_TCON);
}

猜你喜欢

转载自blog.csdn.net/lushoumin/article/details/86574403
今日推荐