Celery的应用

使用celery第一件要做的最为重要的事情是需要先创建一个Celery实例,我们一般叫做celery应用,或者更简单直接叫做一个app。app应用是我们使用celery所有功能的入口,比如创建任务,管理任务等,在使用celery的时候,app必须能够被其他的模块导入。

1.创建应用

我们首先创建tasks.py模块, 其内容为:

from celery import Celery

# 我们这里案例使用redis作为broker
app = Celery('demo', broker='redis://:[email protected]/1') # 创建任务函数 @app.task def my_task(): print("任务函数正在执行....") 

  Celery第一个参数是给其设定一个名字, 第二参数我们设定一个中间人broker, 在这里我们使用Redis作为中间人。my_task函数是我们编写的一个任务函数, 通过加上装饰器app.task, 将其注册到broker的队列中。

  现在我们在创建一个worker, 等待处理队列中的任务.打开终端,cd到tasks.py同级目录中,执行命令:

celery -A tasks worker --loglevel=info

显示效果如下:

2.调用任务

  任务加入到broker队列中,以便刚才我们创建的celery workder服务器能够从队列中取出任务并执行。如何将任务函数加入到队列中,可使用delay()。

进入python终端, 执行如下代码:

from tasks import my_task
my_task.delay()

执行效果如下:

我们通过worker的控制台,可以看到我们的任务被worker处理。调用一个任务函数,将会返回一个AsyncResult对象,这个对象可以用来检查任务的状态或者获得任务的返回值。

3.存储结果

  如果我们想跟踪任务的状态,Celery需要将结果保存到某个地方。有几种保存的方案可选:SQLAlchemy、Django ORM、Memcached、 Redis、RPC (RabbitMQ/AMQP)。

  例子我们仍然使用Redis作为存储结果的方案,任务结果存储配置我们通过Celery的backend参数来设定。我们将tasks模块修改如下:

from celery import Celery

# 我们这里案例使用redis作为broker
app = Celery('demo',
             backend='redis://:[email protected]:6379/2', broker='redis://:[email protected]:6379/1') # 创建任务函数 @app.task def my_task(a, b): print("任务函数正在执行....") return a + b 

  我们给Celery增加了backend参数,指定redis作为结果存储,并将任务函数修改为两个参数,并且有返回值。

猜你喜欢

转载自www.cnblogs.com/mxsf/p/10375543.html
0条评论
添加一条新回复