tensorflow(6)——卷积神经网络

学习《Tensorflow入门教程》记录 

卷积神经网络流程框图如下:

First Conv and Pool Layers ——Second Conv and Pool Layers——First Fully Connected Layer——Dropout Layer——Second Fully Connected Layer——Final Layer
池化层简单理解:把卷积得到的结果进行降维处理。

示例代码:

import tensorflow as tf
import random
import numpy as np
import matplotlib.pyplot as plt
import datetime

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("data/", one_hot=True)

tf.reset_default_graph()
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape = [None, 28,28,1])
y_ = tf.placeholder("float", shape = [None, 10])

#5*5的卷积核  1个通道的输入图像  32个不同的卷积核,得到32个特征图
W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
#偏置
b_conv1 = tf.Variable(tf.constant(.1, shape = [32]))

#进行卷积运算
#[1, 1, 1, 1] 中间2个1,卷积每次滑动的步长
#padding='SAME' 边缘自动补充
h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
h_conv1 = tf.nn.relu(h_conv1)
#进行池化
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#定义为函数
def conv2d(x, W):
    return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#全连接层
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#First Fully Connected Layer
#经过了2次卷积和池化 28*28*1变成了7*7*64  定义得到了1024维特征
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])   #把特征拉成1条
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#Dropout Layer,防止过拟合
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#第二次全连接层
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))

#Final Layer
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y))
trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess.run(tf.global_variables_initializer())

batchSize = 50
for i in range(1000):
    batch = mnist.train.next_batch(batchSize)
    trainingInputs = batch[0].reshape([batchSize,28,28,1])
    trainingLabels = batch[1]
    if i%100 == 0:
        trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})
        print ("step %d, training accuracy %g"%(i, trainAccuracy))
    trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})

运行结果:
step 0, training accuracy 0.2
step 100, training accuracy 0.84
step 200, training accuracy 1
step 300, training accuracy 0.96
step 400, training accuracy 1
step 500, training accuracy 0.96
step 600, training accuracy 1
step 700, training accuracy 0.96
step 800, training accuracy 0.96
step 900, training accuracy 0.96

猜你喜欢

转载自blog.csdn.net/huhuandk/article/details/86299074
今日推荐