机器学习实战笔记之决策树

一、trees.py

from math import log
import operator
import treePlotter

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1

    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key]) / numEntries
        shannonEnt -= prob * log(prob, 2)

    return shannonEnt

def createDataSet():
    dataSet = [
        [1, 1,'yes'],
        [1, 1, 'yes'],
        [1, 0, 'no'],
        [0, 1, 'no'],
        [0, 1, 'no']
    ]

    labels = ['no surfacing','flippers']
    return dataSet, labels

def splitDataSet(dataSet, axis, value):
    """划分数据集"""
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    """选择熵最大的特征"""
    numFeatures = len(dataSet[0]) - 1
    baseEntroy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0;    bestFeature = -1
    for i in range(numFeatures):
        featureList = [example[i] for example in dataSet]
        #print("featureList", featureList)
        uniqueVals = set(featureList)
        #print("uniqueVals", uniqueVals)
        newEntroy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntroy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntroy - newEntroy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # print("classList", classList)
    # print("classList.count(classList[0])", classList.count(classList[0]))
    # print("len(classList)", len(classList))

    #类别完全相同则停止继续划分
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    #遍历完所有特征时返回出现次数最多的类别
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    #print("bestFeat", bestFeat)
    # print("bestFeatLabel", bestFeatLabel)
    # print("myTree in function", myTree)
    # print("labels", labels)

    featureValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featureValues)
    #print("uniqueVals", uniqueVals)
    for value in uniqueVals:
        #复制类标签
        subLabels = labels[:]
        # print("subLabels", subLabels)
        #递归划分树
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print("myTree in for", myTree)
    return myTree

def majorityCnt(classList):
    """返回出现次数最多的分类名称"""
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    #按第2个元素降序排序sortedClassCount [('B', 2), ('A', 1)]
    #sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
    return sortedClassCount[0][0]

def classify(inputTree, featLabels, testVec):
    """分类"""
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return  classLabel

def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()

def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)



myDat, labels = createDataSet()
print("myDat", myDat)
print("labels", labels)
print("shannonEnt", calcShannonEnt(myDat))

print("bestFeature", chooseBestFeatureToSplit(myDat))
#print("createTree", createTree(myDat, labels))
myTree = treePlotter.retrieveTree(0)
print("myTree", myTree)
print("classify[1,0]", classify(myTree, labels, [1,0]))
print("classify[1,1]", classify(myTree, labels, [1,1]))

storeTree(myTree, 'classifierStorage.txt')
print("grabTree", grabTree('classifierStorage.txt'))

fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age','prescript','astigmatic','tearRate']
print("lenses", lenses)
print("lensesLabels", lensesLabels)
lensesTree = createTree(lenses, lensesLabels)
print("lensesTree", lensesTree)
treePlotter.createPlot(lensesTree)

-----------------------------------------------------------------------------------

二、treePlotter.py

'''
Created on Oct 14, 2010

@author: Peter Harrington
'''
import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

# def createPlot():
#    fig = plt.figure(1, facecolor='white')
#    fig.clf()
#    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
#    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
#    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
#    plt.show()

def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

#createPlot()
# myTree = retrieveTree(0)
# print("num of leafs", getNumLeafs(myTree))
# print("depth of tree", getTreeDepth(myTree))
# myTree['no surfacing'][3] = 'maybe'
# createPlot(myTree)

猜你喜欢

转载自blog.csdn.net/feidao84/article/details/81229098