Google机器学习------神经网络简介

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/amazingcode/article/details/85156528

学习目标:

  • 使用 TensorFlow DNNRegressor 类定义神经网络 (NN) 及其隐藏层
  • 训练神经网络学习数据集中的非线性规律,并实现比线性回归模型更好的效果

在之前的练习中,我们使用合成特征来帮助模型学习非线性规律。

一组重要的非线性关系是纬度和经度的关系,但也可能存在其他非线性关系。

现在我们从之前练习中的逻辑回归任务回到标准的(线性)回归任务。也就是说,我们将直接预测 median_house_value

from __future__ import print_function
import math
from IPython import display
from matplotlib import cm
from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from sklearn import metrics
import tensorflow as tf
from tensorflow.python.data import Dataset
tf.logging.set_verbosity(tf.logging.ERROR)
pd.options.display.max_rows = 10
pd.options.display.float_format = '{:.1f}'.format
california_housing_dataframe = pd.read_csv("https://download.mlcc.google.cn/mledu-datasets/california_housing_train.csv", sep=",")
california_housing_dataframe = california_housing_dataframe.reindex(
    np.random.permutation(california_housing_dataframe.index))

def preprocess_features(california_housing_dataframe):
  selected_features = california_housing_dataframe[
    ["latitude",
     "longitude",
     "housing_median_age",
     "total_rooms",
     "total_bedrooms",
     "population",
     "households",
     "median_income"]]
  processed_features = selected_features.copy()
  # Create a synthetic feature.
  processed_features["rooms_per_person"] = (
    california_housing_dataframe["total_rooms"] /
    california_housing_dataframe["population"])
  return processed_features

def preprocess_targets(california_housing_dataframe):
  output_targets = pd.DataFrame()
  # Scale the target to be in units of thousands of dollars.
  output_targets["median_house_value"] = (
    california_housing_dataframe["median_house_value"] / 1000.0)
  return output_targets

training_examples = preprocess_features(california_housing_dataframe.head(12000))
training_targets = preprocess_targets(california_housing_dataframe.head(12000))

# Choose the last 5000 (out of 17000) examples for validation.
validation_examples = preprocess_features(california_housing_dataframe.tail(5000))
validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))

# Double-check that we've done the right thing.
print("Training examples summary:")
display.display(training_examples.describe())
print("Validation examples summary:")
display.display(validation_examples.describe())

print("Training targets summary:")
display.display(training_targets.describe())
print("Validation targets summary:")
display.display(validation_targets.describe())

def construct_feature_columns(input_features):
    return set([tf.feature_column.numeric_column(
        my_feature) for my_feature in input_features])

def my_input_fn(features,targets,batch_size=1,shuffle=True,num_epochs=None):
    features={key:np.array(value) for key,value in dict(features).items()}
    ds=Dataset.from_tensor_slices((features,targets))
    ds=ds.batch(batch_size).repeat(num_epochs)
    if shuffle:
        ds=ds.shuffle(10000)
    features,labels=ds.make_one_shot_iterator().get_next()
    return features,labels

 用 hidden_units 定义神经网络的结构。hidden_units 参数会创建一个整数列表,其中每个整数对应一个隐藏层,表示其中的节点数。以下面的赋值为例:

hidden_units=[3,10]

上述赋值为神经网络指定了两个隐藏层:

  • 第一个隐藏层包含 3 个节点。
  • 第二个隐藏层包含 10 个节点。

如果我们想要添加更多层,可以向该列表添加更多整数。例如,hidden_units=[10,20,30,40] 会创建 4 个分别包含 10、20、30 和 40 个单元的隐藏层。

默认情况下,所有隐藏层都会使用 ReLu 激活函数,且是全连接层。

def train_nn_regression_model(
    learning_rate,
    steps,
    batch_size,
    hidden_units,
    training_examples,
    training_targets,
    validation_examples,
    validation_targets):
  periods = 10
  steps_per_period = steps / periods
  
  # Create a DNNRegressor object.
  my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
  my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)
  dnn_regressor = tf.estimator.DNNRegressor(
      feature_columns=construct_feature_columns(training_examples),
      hidden_units=hidden_units,
      optimizer=my_optimizer
  )
  # Create input functions.
  training_input_fn = lambda: my_input_fn(training_examples, 
                                          training_targets["median_house_value"], 
                                          batch_size=batch_size)
  predict_training_input_fn = lambda: my_input_fn(training_examples, 
                                                  training_targets["median_house_value"], 
                                                  num_epochs=1, 
                                                  shuffle=False)
  predict_validation_input_fn = lambda: my_input_fn(validation_examples, 
                                                    validation_targets["median_house_value"], 
                                                    num_epochs=1, 
                                                    shuffle=False)
  # Train the model, but do so inside a loop so that we can periodically assess
  # loss metrics.
  print("Training model...")
  print("RMSE (on training data):")
  training_rmse = []
  validation_rmse = []
  for period in range (0, periods):
    # Train the model, starting from the prior state.
    dnn_regressor.train(
        input_fn=training_input_fn,
        steps=steps_per_period
    )
    # Take a break and compute predictions.
    training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)
    training_predictions = np.array([item['predictions'][0] for item in training_predictions])
    
    validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)
    validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])
    
    # Compute training and validation loss.
    training_root_mean_squared_error = math.sqrt(
        metrics.mean_squared_error(training_predictions, training_targets))
    validation_root_mean_squared_error = math.sqrt(
        metrics.mean_squared_error(validation_predictions, validation_targets))
    # Occasionally print the current loss.
    print("  period %02d : %0.2f" % (period, training_root_mean_squared_error))
    # Add the loss metrics from this period to our list.
    training_rmse.append(training_root_mean_squared_error)
    validation_rmse.append(validation_root_mean_squared_error)
  print("Model training finished.")
  # Output a graph of loss metrics over periods.
  plt.ylabel("RMSE")
  plt.xlabel("Periods")
  plt.title("Root Mean Squared Error vs. Periods")
  plt.tight_layout()
  plt.plot(training_rmse, label="training")
  plt.plot(validation_rmse, label="validation")
  plt.legend()
  print("Final RMSE (on training data):   %0.2f" % training_root_mean_squared_error)
  print("Final RMSE (on validation data): %0.2f" % validation_root_mean_squared_error)
  return dnn_regressor

训练神经网络模型

调整超参数,目标是将 RMSE 降到 110 以下。

扫描二维码关注公众号,回复: 4587179 查看本文章

运行以下代码块来训练神经网络模型。

我们已经知道,在使用了很多特征的线性回归练习中,110 左右的 RMSE 已经是相当不错的结果。我们将得到比它更好的结果。

在此练习中,您的任务是修改各种学习设置,以提高在验证数据上的准确率。

对于神经网络而言,过拟合是一种真正的潜在危险。您可以查看训练数据损失与验证数据损失之间的差值,以帮助判断模型是否有过拟合的趋势。如果差值开始变大,则通常可以肯定存在过拟合。

由于存在很多不同的可能设置,强烈建议您记录每次试验,以在开发流程中进行参考。

此外,获得效果出色的设置后,尝试多次运行该设置,看看结果的重复程度。由于神经网络权重通常会初始化为较小的随机值,因此每次运行结果应该存在差异。

dnn_regressor = train_nn_regression_model(
    learning_rate=0.01,
    steps=500,
    batch_size=10,
    hidden_units=[10, 2],
    training_examples=training_examples,
    training_targets=training_targets,
    validation_examples=validation_examples,
    validation_targets=validation_targets)

dnn_regressor = train_nn_regression_model(
    learning_rate=0.001,
    steps=2000,
    batch_size=100,
    hidden_units=[10, 10],
    training_examples=training_examples,
    training_targets=training_targets,
    validation_examples=validation_examples,
    validation_targets=validation_targets)

用测试数据进行评估

确认您的验证效果结果经受得住测试数据的检验。

获得满意的模型后,用测试数据评估该模型,以与验证效果进行比较。

california_housing_test_data = pd.read_csv("https://download.mlcc.google.cn/mledu-datasets/california_housing_test.csv", sep=",")

test_examples = preprocess_features(california_housing_test_data)
test_targets = preprocess_targets(california_housing_test_data)

predict_testing_input_fn = lambda: my_input_fn(test_examples, 
                                               test_targets["median_house_value"], 
                                               num_epochs=1, 
                                               shuffle=False)

test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)
test_predictions = np.array([item['predictions'][0] for item in test_predictions])

root_mean_squared_error = math.sqrt(
    metrics.mean_squared_error(test_predictions, test_targets))

print("Final RMSE (on test data): %0.2f" % root_mean_squared_error)

猜你喜欢

转载自blog.csdn.net/amazingcode/article/details/85156528
今日推荐