快速沃尔什变换(FWT)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhouyuheng2003/article/details/84728063

1前言

在之前学完了FFT稍微码了一些题、也学习了一下NTT相关的知识之后,我觉得有必要学习一下FWT,这篇博客就是阐述我对FWT的理解的

2介绍

2.1解决的问题

对于FFT,它的过程本质上是 c n = i + j = n a i b j c_n=\sum_{i+j=n}a_i*b_j
然后考虑一下那个 i + j = n i+j=n 的情况,如果换个符号,比如 i j = n i-j=n ,那么想必你也会做,只要把B翻转就好了
在NTT的题中,其实 i j = n ( m o d p ) i*j=n\pmod p ,在p有原根的时候也可以做,直接把i位置的数换到 log i \log_{原根}i ,然后再做NTT,最后弄回来就好了
那么对于 i j = n i|j=n i & j = n i\& j=n i j = n i\oplus j=n 的情况怎么办?
可以用FWT来解决
这篇文章中用到的只是快速沃尔什变换(FWT)的一个特殊情况,有兴趣可以去网上搜一搜广义的快速沃尔什是干什么的

2.2文章中有可能用到的符号&特殊说明

首先,这篇博客中提到的n(多项式的项数)如无特殊说明都是2的幂次,方便处理,如果不为2的幂次,可以在高次加0系数
然后,对于一些公式,你可能会觉得比较长,其实只是因为我列的项数比较多导致的,你可以只看第一项来看懂我在推什么


对于一个一般的多项式 f ( x ) = a 0 x 0 + a 1 x 1 + + a n 1 x n 1 f(x)=a_0x^0+a_1x^1+···+a_{n-1}x^{n-1}
将其表示为 ( a 0 , a 1 , a 2 a n 1 ) (a_0,a_1,a_2···a_{n-1})


定义多项式加法
C ( x ) = A ( x ) + B ( x ) = ( a 0 , a 1 , a 2 a n 1 ) + ( b 0 , b 1 , b 2 b n 1 ) = ( a 0 + b 0 , a 1 + b 1 , a 2 + b 2 a n 1 + b n 1 ) \begin{aligned} C(x)&=A(x)+B(x)\\ &=(a_0,a_1,a_2···a_{n-1})+(b_0,b_1,b_2···b_{n-1})\\ &=(a_0+b_0,a_1+b_1,a_2+b_2···a_{n-1}+b_{n-1})\\ \end{aligned}


多项式的减法把符号变成减号
C ( x ) = A ( x ) B ( x ) = ( a 0 , a 1 , a 2 a n 1 ) ( b 0 , b 1 , b 2 b n 1 ) = ( a 0 b 0 , a 1 b 1 , a 2 b 2 a n 1 b n 1 ) \begin{aligned} C(x)&=A(x)-B(x)\\ &=(a_0,a_1,a_2···a_{n-1})-(b_0,b_1,b_2···b_{n-1})\\ &=(a_0-b_0,a_1-b_1,a_2-b_2···a_{n-1}-b_{n-1})\\ \end{aligned}


多项式的对应系数相乘乘法(区别于那个FFT做的卷积的乘法
C ( x ) = A ( x ) B ( x ) = ( a 0 , a 1 , a 2 a n 1 ) ( b 0 , b 1 , b 2 b n 1 ) = ( a 0 b 0 , a 1 b 1 , a 2 b 2 a n 1 b n 1 ) \begin{aligned} C(x)&=A(x)*B(x)\\ &=(a_0,a_1,a_2···a_{n-1})*(b_0,b_1,b_2···b_{n-1})\\ &=(a_0*b_0,a_1*b_1,a_2*b_2···a_{n-1}*b_{n-1})\\ \end{aligned}


对于多项式的一个操作 @ ( @ { ( ) , & ( ) , ( ) } ) @(@ \in \left\{ |(或),\&(与),\oplus(异或) \right\}) ,请看清楚,这里的是卷积,FFT做的多项式乘法相当于这里的符号用“+”,然而多项式的“+”已经被定义过了,前面的系数相乘乘法事实上不应该用那个符号,所以没有列出
C ( x ) = A ( x ) @ B ( x ) = ( a 0 , a 1 , a 2 a n 1 ) @ ( b 0 , b 1 , b 2 b n 1 ) = ( i @ j = 0 a i b j , i @ j = 1 a i b j , i @ j = 2 a i b j i @ j = n 1 a i b j ) \begin{aligned} C(x)&=A(x)@B(x)\\ &=(a_0,a_1,a_2···a_{n-1})@(b_0,b_1,b_2···b_{n-1})\\ &=(\sum _{i@j=0}a_i*b_j,\sum _{i@j=1}a_i*b_j,\sum _{i@j=2}a_i*b_j···\sum _{i@j=n-1}a_i*b_j)\\ \end{aligned}
特殊的,这里的 @ @ 运算具有分配律,即 ( A + B ) @ C = A @ C + B @ C (A+B)@C=A@C+B@C ,至于证明也非常方便:
i @ j = x ( a i + b i ) c j = i @ j = x ( a i + b i ) c j = i @ j = x ( a i c j + b i c j ) = i @ j = x a i c j + i @ j = x b i c j \begin{aligned} \sum _{i@j=x}(a_i+b_i)*c_j&=\sum _{i@j=x}(a_i+b_i)*c_j\\ &=\sum _{i@j=x}(a_i*c_j+b_i*c_j)\\ &=\sum _{i@j=x}a_i*c_j+\sum _{i@j=x}b_i*c_j \end{aligned}


另外对于一个多项式 A A ,设 n = 2 k n=2^k ,定义 A 0 A_0 A A 的前 2 k 1 2^{k-1} 个系数、定义 A 1 A_1 A A 的后 2 k 1 2^{k-1} 个系数
定义运算 A = ( B , C ) A=(B,C) 表示B这个多项式后面接上C等于A
用字母表示大概意思是:
( A , B ) = ( ( a 0 , a 1 , a 2 a x 1 ) , ( b 0 , b 1 , b 2 b y 1 ) ) = ( a 0 , a 1 , a 2 a x 1 , b 0 , b 1 , b 2 b y 1 ) \begin{aligned} (A,B)&=((a_0,a_1,a_2···a_{x-1}),(b_0,b_1,b_2···b_{y-1}))\\ &=(a_0,a_1,a_2···a_{x-1},b_0,b_1,b_2···b_{y-1})\\ \end{aligned}

2.3FWT的大致思路

假设我们现在有两个多项式 A A B B 以及一个位运算符 @ @ ,思路和FFT相似,先求出某个多项式 F W T ( A ) FWT(A) F W T ( B ) FWT(B) ,然后对应相乘得到多项式 F W T ( C ) FWT(C) ,最后进行 I F W T IFWT ,得出结果 C C

3实现

3.1or运算

3.1.1构造

先来讲or运算吧
现在要求的是: c n = i j = n a i b j c_n=\sum_{i|j=n}a_ib_j
定义FWT(A):
F W T ( A ) = ( i 0 = 0 a i , i 1 = 1 a i , i 2 = 2 a i i ( n 1 ) = ( n 1 ) a i ) \begin{aligned} FWT(A)=(\sum_{i|0=0}a_i,\sum_{i|1=1}a_i,\sum_{i|2=2}a_i···\sum_{i|(n-1)=(n-1)}a_i) \end{aligned}
容易发现一件事: F W T ( A B ) = F W T ( A ) F W T ( B ) FWT(A|B)=FWT(A)*FWT(B)
证明:
F W T ( A ) F W T ( B ) = ( i 0 = 0 a i , i 1 = 1 a i , i 2 = 2 a i i ( n 1 ) = ( n 1 ) a i ) ( i 0 = 0 b i , i 1 = 1 b i , i 2 = 2 b i i ( n 1 ) = ( n 1 ) b i ) = ( ( i 0 = 0 a i ) ( j 0 = 0 b j ) , ( i 1 = 1 a i ) ( j 1 = 1 b j ) , ( i 2 = 2 a i ) ( j 2 = 2 b j ) ( i ( n 1 ) = ( n 1 ) a i ) ( j ( n 1 ) = ( n 1 ) b j ) ) = ( i j 0 = 0 a i b j , i j 1 = 1 a i b j , i j 2 = 2 a i b j i j ( n 1 ) = ( n 1 ) a i b j ) = ( k 0 = 0 i j = k a i b j , k 1 = 1 i j = k a i b j , k 2 = 2 i j = k a i b j k ( n 1 ) = ( n 1 ) i j = k a i b j ) = F W T ( A B ) \begin{aligned} FWT(A)*FWT(B)&=(\sum_{i|0=0}a_i,\sum_{i|1=1}a_i,\sum_{i|2=2}a_i···\sum_{i|(n-1)=(n-1)}a_i)*(\sum_{i|0=0}b_i,\sum_{i|1=1}b_i,\sum_{i|2=2}b_i···\sum_{i|(n-1)=(n-1)}b_i)\\ &=((\sum_{i|0=0}a_i)*(\sum_{j|0=0}b_j),(\sum_{i|1=1}a_i)*(\sum_{j|1=1}b_j),(\sum_{i|2=2}a_i)*(\sum_{j|2=2}b_j)···(\sum_{i|(n-1)=(n-1)}a_i)*(\sum_{j|(n-1)=(n-1)}b_j))\\ &=(\sum_{i|j|0=0}a_i*b_j,\sum_{i|j|1=1}a_i*b_j,\sum_{i|j|2=2}a_i*b_j···\sum_{i|j|(n-1)=(n-1)}a_i*b_j)\\ &=(\sum_{k|0=0}\sum_{i|j=k}a_i*b_j,\sum_{k|1=1}\sum_{i|j=k}a_i*b_j,\sum_{k|2=2}\sum_{i|j=k}a_i*b_j···\sum_{k|(n-1)=(n-1)}\sum_{i|j=k}a_i*b_j)\\ &=FWT(A|B) \end{aligned}
当然这个的证明还有其它的很多方法,我觉得我的这个证明还是比较清楚的
也就是说,现在:

  • 问题一:
    已知一个多项式A,求FWT(A)
    即FWT
  • 问题二:
    已知FWT(A),求A
    即IFWT

解决这两个问题,我们就能够:

  • 已知A,B
  • FWT,求出FWT(A),FWT(B)
  • 对应系数相乘,求出FWT(A|B)
  • IFWT,求出A|B
3.1.2计算

我们可以递归定义
F W T ( A ) = { ( F W T ( A 0 ) , F W T ( A 0 + A 1 ) ) ( n 1 ) A ( n = 1 ) FWT(A)=\begin{cases} (FWT(A_0),FWT(A_0+A_1))(n\ne1)\\ A(n=1) \end{cases}
这么定义的原因:因为 A 0 A_0 的编号的最高位都是0, A 1 A_1 的编号与 A 0 A_0 的编号的最高位变成1的结果一一对应,因为是or运算,所以 A 0 A_0 能到 A 1 A_1 里一一对应的贡献
然后考虑 I F W T IFWT (定义 I F W T ( F W T ( A ) ) = A IFWT(FWT(A))=A ),由于 F W T ( A + B ) = F W T ( A ) + F W T ( B ) FWT(A+B)=FWT(A)+FWT(B) (这个证明不用说了吧,看我的定义,这个相当于乘法分配律拆一下就好了),可以列出 I F W T IFWT 的式子,推导:
已知 F W T ( A ) 0 FWT(A)_0 F W T ( A ) 1 FWT(A)_1 ,求 A 0 A_0 A 1 A_1
F W T ( A ) 0 = F W T ( A 0 ) A 0 = I D F T ( F W T ( A 0 ) ) = I D F T ( F W T ( A ) 0 ) F W T ( A ) 1 = F W T ( A 0 ) + F W T ( A 1 ) A 1 = I D F T ( F W T ( A 1 ) ) = I D F T ( F W T ( A ) 1 F W T ( A ) 0 ) \because FWT(A)_0=FWT(A_0)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(FWT(A)_0)\\ \because FWT(A)_1=FWT(A_0)+FWT(A_1)\\ \therefore A_1= IDFT(FWT(A_1))=IDFT(FWT(A)_1-FWT(A)_0)


总结:
I F W T ( A ) = { ( I F W T ( A 0 ) , I F W T ( A 1 A 0 ) ) ( n 1 ) A ( n = 1 ) IFWT(A)=\begin{cases} (IFWT(A_0),IFWT(A_1-A_0))(n\ne1)\\ A(n=1) \end{cases}
然后就可以写代码了(代码和FFT有点像)

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
                A[j+k+i]+=A[j+k]*fla;
}

然后or运算的FWT就没了

3.2and运算

3.2.1构造

and其实和or差的不多
现在要求的是: c n = i &amp; j = n a i b j c_n=\sum_{i\&amp;j=n}a_ib_j
同样定义FWT(A):
F W T ( A ) = ( i &amp; 0 = 0 a i , i &amp; 1 = 1 a i , i &amp; 2 = 2 a i i &amp; ( n 1 ) = ( n 1 ) a i ) \begin{aligned} FWT(A)=(\sum_{i\&amp;0=0}a_i,\sum_{i\&amp;1=1}a_i,\sum_{i\&amp;2=2}a_i···\sum_{i\&amp;(n-1)=(n-1)}a_i) \end{aligned}
同样的: F W T ( A &amp; B ) = F W T ( A ) F W T ( B ) FWT(A\&amp;B)=FWT(A)*FWT(B)
证明:
F W T ( A ) F W T ( B ) = ( i &amp; 0 = 0 a i , i &amp; 1 = 1 a i , i &amp; 2 = 2 a i i &amp; ( n 1 ) = ( n 1 ) a i ) ( i &amp; 0 = 0 b i , i &amp; 1 = 1 b i , i &amp; 2 = 2 b i i &amp; ( n 1 ) = ( n 1 ) b i ) = ( ( i &amp; 0 = 0 a i ) ( j &amp; 0 = 0 b j ) , ( i &amp; 1 = 1 a i ) ( j &amp; 1 = 1 b j ) , ( i &amp; 2 = 2 a i ) ( j &amp; 2 = 2 b j ) ( i &amp; ( n 1 ) = ( n 1 ) a i ) ( j &amp; ( n 1 ) = ( n 1 ) b j ) ) = ( i &amp; j &amp; 0 = 0 a i b j , i &amp; j &amp; 1 = 1 a i b j , i &amp; j &amp; 2 = 2 a i b j i &amp; j &amp; ( n 1 ) = ( n 1 ) a i b j ) = ( k &amp; 0 = 0 i &amp; j = k a i b j , k &amp; 1 = 1 i &amp; j = k a i b j , k &amp; 2 = 2 i &amp; j = k a i b j k &amp; ( n 1 ) = ( n 1 ) i &amp; j = k a i b j ) = F W T ( A &amp; B ) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum_{i\&amp;0=0}a_i,\sum_{i\&amp;1=1}a_i,\sum_{i\&amp;2=2}a_i···\sum_{i\&amp;(n-1)=(n-1)}a_i)*(\sum_{i\&amp;0=0}b_i,\sum_{i\&amp;1=1}b_i,\sum_{i\&amp;2=2}b_i···\sum_{i\&amp;(n-1)=(n-1)}b_i)\\ &amp;=((\sum_{i\&amp;0=0}a_i)*(\sum_{j\&amp;0=0}b_j),(\sum_{i\&amp;1=1}a_i)*(\sum_{j\&amp;1=1}b_j),(\sum_{i\&amp;2=2}a_i)*(\sum_{j\&amp;2=2}b_j)···(\sum_{i\&amp;(n-1)=(n-1)}a_i)*(\sum_{j\&amp;(n-1)=(n-1)}b_j))\\ &amp;=(\sum_{i\&amp;j\&amp;0=0}a_i*b_j,\sum_{i\&amp;j\&amp;1=1}a_i*b_j,\sum_{i\&amp;j\&amp;2=2}a_i*b_j···\sum_{i\&amp;j\&amp;(n-1)=(n-1)}a_i*b_j)\\ &amp;=(\sum_{k\&amp;0=0}\sum_{i\&amp;j=k}a_i*b_j,\sum_{k\&amp;1=1}\sum_{i\&amp;j=k}a_i*b_j,\sum_{k\&amp;2=2}\sum_{i\&amp;j=k}a_i*b_j···\sum_{k\&amp;(n-1)=(n-1)}\sum_{i\&amp;j=k}a_i*b_j)\\ &amp;=FWT(A\&amp;B) \end{aligned}
然后没啦

3.2.2计算

我们一样可以递归定义
F W T ( A ) = { ( F W T ( A 0 + A 1 ) , F W T ( A 1 ) ) ( n 1 ) A ( n = 1 ) FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_1))(n\ne1)\\ A(n=1) \end{cases}
这么定义的原因(其实和or差不多):因为 A 0 A_0 的编号的最高位都是0, A 1 A_1 的编号与 A 0 A_0 的编号的最高位变成1的结果一一对应,因为是and运算,所以 A 1 A_1 能到 A 0 A_0 里一一对应的贡献
然后是 I F W T IFWT ,推导:
已知 F W T ( A ) 0 FWT(A)_0 F W T ( A ) 1 FWT(A)_1 ,求 A 0 A_0 A 1 A_1
F W T ( A ) 0 = F W T ( A 0 ) + F W T ( A 1 ) A 0 = I D F T ( F W T ( A 0 ) ) = I D F T ( F W T ( A ) 0 F W T ( A ) 1 ) F W T ( A ) 1 = F W T ( A 1 ) A 1 = I D F T ( F W T ( A 1 ) ) = I D F T ( F W T ( A ) 1 ) \because FWT(A)_0=FWT(A_0)+FWT(A_1)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(FWT(A)_0-FWT(A)_1)\\ \because FWT(A)_1=FWT(A_1)\\ \therefore A_1= IDFT(FWT(A_1))=IDFT(FWT(A)_1)


总结:
I F W T ( A ) = { ( I F W T ( A 0 A 1 ) , I F W T ( A 1 ) ) ( n 1 ) A ( n = 1 ) IFWT(A)=\begin{cases} (IFWT(A_0-A_1),IFWT(A_1))(n\ne1)\\ A(n=1) \end{cases}
然后上代码

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
                A[j+k]+=A[j+k+i]*fla;
}

3.3xor运算

3.3.1构造

哦不,这是最烦的xor运算,我的思路在xor下是最烦的
现在要求的是: c n = i j = n a i b j c_n=\sum_{i\oplus j=n}a_ib_j
也要定义FWT(A),然而定义有一点烦:
update:这是新版本,比较清晰易懂:

符号说明:
p o p c o u n t ( x ) popcount(x) 等于x在二进制下1的数量,我在下面简写为 p c ( x ) pc(x)

F W T ( A ) = ( ( 1 ) p c ( i &amp; 0 ) a i , ( 1 ) p c ( i &amp; 1 ) a i ( 1 ) p c ( i &amp; ( n 1 ) ) a i ) FWT(A)=(\sum (-1)^{pc(i\&amp;0)}a_i,\sum (-1)^{pc(i\&amp;1)}a_i···\sum (-1)^{pc(i\&amp;(n-1))}a_i)
证明: F W T ( A B ) = F W T ( A ) F W T ( B ) FWT(A\oplus B)=FWT(A)*FWT(B)
F W T ( A ) F W T ( B ) = ( ( 1 ) p c ( i &amp; 0 ) a i , ( 1 ) p c ( i &amp; 1 ) a i ( 1 ) p c ( i &amp; ( n 1 ) ) a i ) ( ( 1 ) p c ( i &amp; 0 ) b i , ( 1 ) p c ( i &amp; 1 ) b i ( 1 ) p c ( i &amp; ( n 1 ) ) b i ) = ( ( ( 1 ) p c ( i &amp; 0 ) a i ) ( ( ( 1 ) p c ( j &amp; 0 ) b j ) ) , ( ( 1 ) p c ( i &amp; 1 ) a i ) ( ( 1 ) p c ( j &amp; 1 ) b j ) ( ( 1 ) p c ( i &amp; ( n 1 ) ) a i ) ( ( 1 ) p c ( j &amp; ( n 1 ) ) b j ) ) = ( ( 1 ) p c ( i j &amp; 0 ) a i b j , ( ( 1 ) p c ( i j &amp; 1 ) a i b j ( ( 1 ) p c ( i j &amp; ( n 1 ) ) a i b j ) = ( ( 1 ) p c ( k &amp; 0 ) i j = k a i b j , ( 1 ) p c ( k &amp; 1 ) i j = k a i b j ( 1 ) p c ( k &amp; ( n 1 ) ) i j = k a i b j ) = F W T ( A B ) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum (-1)^{pc(i\&amp;0)}a_i,\sum (-1)^{pc(i\&amp;1)}a_i···\sum (-1)^{pc(i\&amp;(n-1))}a_i)*(\sum (-1)^{pc(i\&amp;0)}b_i,\sum (-1)^{pc(i\&amp;1)}b_i···\sum (-1)^{pc(i\&amp;(n-1))}b_i)\\ &amp;=((\sum (-1)^{pc(i\&amp;0)}a_i)*((\sum (-1)^{pc(j\&amp;0)}b_j)),(\sum (-1)^{pc(i\&amp;1)}a_i)*(\sum (-1)^{pc(j\&amp;1)}b_j)···(\sum (-1)^{pc(i\&amp;(n-1))}a_i)*(\sum (-1)^{pc(j\&amp;(n-1))}b_j))\\ &amp;=(\sum (-1)^{pc(i\oplus j\&amp;0)}a_i*b_j,(\sum (-1)^{pc(i\oplus j\&amp;1)}a_i*b_j···(\sum (-1)^{pc(i\oplus j\&amp;(n-1))}a_i*b_j)\\ &amp;=(\sum (-1)^{pc(k\&amp;0)}\sum _{i\oplus j=k}a_i*b_j,\sum (-1)^{pc(k\&amp;1)}\sum _{i\oplus j=k}a_i*b_j···\sum (-1)^{pc(k\&amp;(n-1))}\sum _{i\oplus j=k}a_i*b_j)\\ &amp;=FWT(A\oplus B) \end{aligned}


下面是老版本,是一个不太标准的形式,你可以直接跳到3.3.2

符号说明:
p o p c o u n t ( x ) popcount(x) 等于x在二进制下1的数量,我在下面简写为 p c ( x ) pc(x)
逻辑运算符a?b:c 代表若a为真,那么值为b,若为假,值为c

F W T ( A ) = ( p c ( i &amp; 0 ) m o d   2 = = 0 ? a i : a i , p c ( i &amp; 1 ) m o d   2 = = 0 ? a i : a i , p c ( i &amp; 2 ) m o d   2 = = 0 ? a i : a i p c ( i &amp; ( n 1 ) ) m o d   2 = = 0 ? a i : a i ) FWT(A)=(\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i···\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)
容易发现一件事: F W T ( A B ) = F W T ( A ) F W T ( B ) FWT(A\oplus B)=FWT(A)*FWT(B)
证明:
F W T ( A ) F W T ( B ) = ( p c ( i &amp; 0 ) m o d   2 = = 0 ? a i : a i , p c ( i &amp; 1 ) m o d   2 = = 0 ? a i : a i , p c ( i &amp; 2 ) m o d   2 = = 0 ? a i : a i p c ( i &amp; ( n 1 ) ) m o d   2 = = 0 ? a i : a i ) ( p c ( i &amp; 0 ) m o d   2 = = 0 ? b i : b i , p c ( i &amp; 1 ) m o d   2 = = 0 ? b i : b i , p c ( i &amp; 2 ) m o d   2 = = 0 ? b i : b i p c ( i &amp; ( n 1 ) ) m o d   2 = = 0 ? b i : b i ) = ( ( p c ( i &amp; 0 ) m o d   2 = = 0 ? a i : a i ) ( p c ( j &amp; 0 ) m o d   2 = = 0 ? b j : b j ) , ( p c ( i &amp; 1 ) m o d   2 = = 0 ? a i : a i ) ( p c ( j &amp; 1 ) m o d   2 = = 0 ? b j : b j ) , ( p c ( i &amp; 2 ) m o d   2 = = 0 ? a i : a i ) ( p c ( j &amp; 2 ) m o d   2 = = 0 ? b j : b j ) ( p c ( i &amp; ( n 1 ) ) m o d   2 = = 0 ? a i : a i ) ( p c ( j &amp; ( n 1 ) ) m o d   2 = = 0 ? b j : b j ) ) = ( p c ( ( i j ) &amp; 0 ) m o d   2 = = 0 ? a i b j : a i b j , p c ( ( i j ) &amp; 1 ) m o d   2 = = 0 ? a i b j : a i b j , p c ( ( i j ) &amp; 2 ) m o d   2 = = 0 ? a i b j : a i b j p c ( ( i j ) &amp; ( n 1 ) ) m o d   2 = = 0 ? a i b j : a i b j ) = ( p c ( k &amp; 0 ) m o d   2 = = 0 ? i j = k a i b j : i j = k a i b j , p c ( k &amp; 1 ) m o d   2 = = 0 ? i j = k a i b j : i j = k a i b j , p c ( k &amp; 2 ) m o d   2 = = 0 ? i j = k a i b j : i j = k a i b j p c ( k &amp; ( n 1 ) ) m o d   2 = = 0 ? i j = k a i b j : i j = k a i b j ) = F W T ( A B ) \begin{aligned} FWT(A)*FWT(B)&amp;=(\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i,\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i···\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)*(\sum pc(i\&amp;0)mod\ 2==0? b_i:-b_i,\sum pc(i\&amp;1)mod\ 2==0? b_i:-b_i,\sum pc(i\&amp;2)mod\ 2==0? b_i:-b_i···\sum pc(i\&amp;(n-1))mod\ 2==0? b_i:-b_i)\\ &amp;=((\sum pc(i\&amp;0)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;0)mod\ 2==0? b_j:-b_j),(\sum pc(i\&amp;1)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;1)mod\ 2==0? b_j:-b_j),(\sum pc(i\&amp;2)mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;2)mod\ 2==0? b_j:-b_j)···(\sum pc(i\&amp;(n-1))mod\ 2==0? a_i:-a_i)*(\sum pc(j\&amp;(n-1))mod\ 2==0? b_j:-b_j))\\ &amp;=(\sum pc((i\oplus j)\&amp;0)mod\ 2==0? a_i*b_j:-a_i*b_j,\sum pc((i\oplus j)\&amp;1)mod\ 2==0? a_i*b_j:-a_i*b_j,\sum pc((i\oplus j)\&amp;2)mod\ 2==0? a_i*b_j:-a_i*b_j···\sum pc((i\oplus j)\&amp;(n-1))mod\ 2==0? a_i*b_j:-a_i*b_j)\\ &amp;=(\sum pc(k\&amp;0)mod\ 2==0?\sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j,\sum pc(k\&amp;1)mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j,\sum pc(k\&amp;2)mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j···\sum pc(k\&amp;(n-1))mod\ 2==0? \sum_{i \oplus j=k}a_i*b_j:-\sum_{i \oplus j=k}a_i*b_j)\\ &amp;=FWT(A\oplus B) \end{aligned}
这个证明写的我累死了


证完就好了

3.3.2计算

定义
F W T ( A ) = { ( F W T ( A 0 + A 1 ) , F W T ( A 0 A 1 ) ) ( n 1 ) A ( n = 1 ) FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_0-A_1))(n\ne1)\\ A(n=1) \end{cases}
我觉得FWT的脑洞真大,为啥这样就好了呢
就让我来解释一下吧
前提条件一样 F W T ( A + B ) = F W T ( A ) + F W T ( B ) FWT(A+B)=FWT(A)+FWT(B) ,通过这个把式子拆开
考虑当前二进制最高位,前 2 k 1 2^{k-1} 项的位置最高位都为0,所以and最高位之后一定不会是1所以 A 0 A_0 A 1 A_1 的贡献都是原符号,由于后 2 k 1 2^{k-1} 项的位置最高位都为1,所以 A 0 A_0 的贡献都是原符号, A 1 A_1 的贡献符号反号
那么IFWT呢?
推导:
已知 F W T ( A ) 0 FWT(A)_0 F W T ( A ) 1 FWT(A)_1 ,求 A 0 A_0 A 1 A_1
F W T ( A ) 0 = F W T ( A 0 ) + F W T ( A 1 ) F W T ( A ) 1 = F W T ( A 0 ) F W T ( A 1 ) A 0 = I D F T ( F W T ( A 0 ) ) = I D F T ( F W T ( A ) 0 + F W T ( A ) 1 2 ) A 1 = I D F T ( F W T ( A 1 ) ) = I D F T ( F W T ( A ) 0 F W T ( A ) 1 2 ) \because FWT(A)_0=FWT(A_0)+FWT(A_1),FWT(A)_1=FWT(A_0)-FWT(A_1)\\ \therefore A_0=IDFT(FWT(A_0))=IDFT(\frac {FWT(A)_0+FWT(A)_1}2),A_1= IDFT(FWT(A_1))=IDFT(\frac {FWT(A)_0-FWT(A)_1}2)


总结:
I F W T ( A ) = { ( I F W T ( A 0 ) + I F W T ( A 1 ) 2 , I F W T ( A 0 ) I F W T ( A 1 ) 2 ) ( n 1 ) A ( n = 1 ) IFWT(A)=\begin{cases} (\frac {IFWT(A_0)+IFWT(A_1)}{2},\frac {IFWT(A_0)-IFWT(A_1)}{2})(n\ne1)\\ A(n=1) \end{cases}

代码

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
            {
                const int x=A[j+k],y=A[j+k+i];
                A[j+k]=x+y;
                A[j+k+i]=x-y;
                if(fla==-1)A[j+k]/=2,A[j+k+i]/=2;
            }
}

然后好像还有个优化,在一定条件下可以使用,就是把除法留到最后除,代码:

inline void FWT(LL*A,const int fla)
{
    for(rg int i=1;i<lenth;i<<=1)
        for(rg int j=0;j<lenth;j+=(i<<1))
            for(rg int k=0;k<i;k++)
            {
                const int x=A[j+k],y=A[j+k+i];
                A[j+k]=x+y;
                A[j+k+i]=x-y;
            }
    if(fla==-1)
        for(rg int i=0;i<lenth;i++)
            A[i]/=lenth;
}

这就是xor的FWT啦

4总结

这个FWT写了好久,终于完结了,其实FWT本身代码并不长,关键在于理解。FWT用到的地方没FFT多,但依然值得学一下,拓宽思路
相关的题?
例题1(by update): NowCoder 295-H
题意,给出n个数( n 500000 a i 500000 n\leq500000,a_i\leq500000 ),要求选出最少的数使异或值为所有数的异或值
解法,用0/1代表x值是否能取到,使用FWT异或卷积,容易发现最多做log次,每一次推复杂度 O ( n ) O(n) ,做IDFT时由于只要求一个值,所以复杂度 O ( n ) O(n) ,总复杂度 O ( n l o g n ) O(nlogn)
代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
#define rg register
typedef long long LL;
template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
template <typename T> inline void mind(T&a,const T b){a=a<b?a:b;}
template <typename T> inline void maxd(T&a,const T b){a=a>b?a:b;}
template <typename T> inline T abs(const T a){return a>0?a:-a;}
template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
template <typename T> inline T lcm(const T a,const T b){return a/gcd(a,b)*b;}
template <typename T> inline T square(const T x){return x*x;};
template <typename T> inline void read(T&x)
{
    char cu=getchar();x=0;bool fla=0;
    while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}
    while(isdigit(cu))x=x*10+cu-'0',cu=getchar();
    if(fla)x=-x;
}
template <typename T> inline void printe(const T x)
{
    if(x>=10)printe(x/10);
    putchar(x%10+'0');
}
template <typename T> inline void print(const T x)
{
    if(x<0)putchar('-'),printe(-x);
    else printe(x);
}
const int mod=998244353,lenth=524288;
int n,a[lenth],pc[lenth],val,f[lenth];
inline void FWT(int *A)
{
	for(rg int i=1;i<lenth;i<<=1)
		for(rg int j=0;j<lenth;j+=i<<1)
			for(rg int k=0;k<i;k++)
			{
				const int x=A[j+k],y=A[j+k+i];
				A[j+k]=(x+y)%mod;
				A[j+k+i]=(x+mod-y)%mod;
			}
}
int main()
{
	read(n);
	for(rg int i=1,x;i<=n;i++)read(x),a[i]=1,val^=x;
	a[0]=1;
	FWT(a);
	for(rg int i=1;i<lenth;i++)pc[i]=pc[i^(i&-i)]+1;
	for(rg int i=0;i<lenth;i++)f[i]=1;
	for(rg int tim=0;tim<=19;tim++)
	{
		LL calc=0;
		for(rg int i=0;i<lenth;i++)calc+=(pc[i&val]&1)?-f[i]:f[i];
		calc%=mod;
		if(calc)
		{
			print(n-tim);
			return 0;
		}
		for(rg int i=0;i<lenth;i++)f[i]=(LL)f[i]*a[i]%mod;
	}
	return 0;
}

例题2(by update):
我的博客:CF 453 D
撒花结束!
由于写这篇博客写的匆忙,并且很多东西是自己推的,所以如果发现有误请及时提醒我哦

猜你喜欢

转载自blog.csdn.net/zhouyuheng2003/article/details/84728063