Gan学习

参考博客:https://blog.csdn.net/u010678153/article/details/54629393 

                  https://www.cnblogs.com/Charles-Wan/p/6238033.html

GAN原理介绍

说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.org/abs/1406.2661),这篇paper算是这个领域的开山之作。

GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

  • 生成模型G是一个生成图片的网络,生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z ,通过这个噪声生成图片,记做G(z),追求效果是越像真实样本越好。
  • 判别模型D是一个判别图片的网络,判别模型 D 是一个二分类器,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。如图所示:

那么GAN是如何来做的呢?首先,我们又一个第一代的Generator,然后他产生一些图片,然后我们把这些图片和一些真实的图片丢到第一代的Discriminator里面去学习,让第一代的Discriminator能够真实的分辨生成的图片和真实的图片,然后我们又有了第二代的Generator,第二代的Generator产生的图片,能够骗过第一代的Discriminator,此时,我们在训练第二代的Discriminator,依次类推。

如何训练新一代的Generator来骗过上一代的Discriminator,方法其实很简单,你可以把新一代的Generator和上一代的Discriminator连起来形成一个新的NN,我们希望最终的输出接近1,然后我们就可以拿中间的结果当作我们的新的图片的输出,下图很形象的显示了上面的过程:

在训练的过程中固定一方,更新另一方的网络权重(即上图中的update the parameters),交替迭代,在这个过程中,双方都极力优化自己的网络,从而形成竞争对抗,直到双方达到一个动态的平衡(纳什均衡),此时生成模型 G 恢复了训练数据的分布(造出了和真实数据一模一样的样本),判别模型再也判别不出来结果,在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5,约等于乱猜。

这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

图片描述

简单分析一下这个公式:

  • 整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。
  • D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。
  • G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。
  • D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)

那么如何用随机梯度下降法训练D和G?论文中也给出了算法:

å¾çæè¿°

这里红框圈出的部分是我们要额外注意的。第一步我们训练D,D是希望V(G, D)越大越好,所以是加上梯度(ascending)。第二步训练G时,V(G, D)越小越好,所以是减去梯度(descending)。整个训练过程交替进行。

最右边的一列是真实样本的图像,前面五列是生成网络生成的样本图像,可以看到生成的样本还是很像真实样本的,只是和真实样本属于不同的类,类别是随机的。

猜你喜欢

转载自blog.csdn.net/m0_38111632/article/details/83625141
今日推荐