微积分基础知识:泰勒公式

版权声明:本文为博主原创文章,如需转载,请注明出处: https://blog.csdn.net/MASILEJFOAISEGJIAE/article/details/83034146

泰勒展开式

泰勒展开式是数学中极其强大的函数近似工具。利用函数某个点的导数,来近似这个点附近的函数值。

意义:用一个 n n 次多项式来近似函数 f ( x ) f(x) a a 点附近的部分。


1. n n 阶泰勒公式
f ( x ) f(x) 有直到 n + 1 n+1 的导数,则有
f ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) ( x a ) 2 2 ! + . . . + f ( n ) ( a ) ( x a ) n n ! + R n ( x )       \bm {f(x)=f(a)+f'(a)(x-a)+f''(a)\frac{(x-a)^2}{2!}+...+f^{(n)}(a)\frac{(x-a)^n}{n!}+R_n(x) \ \ \ \ \ }
其中
R n ( x ) = f ( n + 1 ) ( c ) ( n + 1 ) ! ( x a ) n + 1 ,   c ( a , x ) \bm{R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},\ c\in(a,x)}

R n ( x ) \bm{R_n(x)} 被称为拉格朗日余项


2. n n 阶泰勒公式的推导

我们希望让n次多项式
P n ( x ) = b 0 + b 1 ( x a ) + b 2 ( x a ) 2 + . . . + b n ( x a ) n         ( 1 ) \bm{P_n(x)=b_0+b_1(x-a)+b_2(x-a)^2+...+b_n(x-a)^n \ \ \ \ \ \ \ (1)}
能够近似函数 f ( x ) f(x) 在点 a a 附近的部分。
P n ( x ) P_n(x) 求各阶导数,有
           P n ( x ) = b 1 + 2 b 2 ( x a ) + . . . + n b n ( x a ) n 1 \ \ \ \ \ \ \ \ \ \ P_n'(x)=b_1+2b_2(x-a)+...+nb_n(x-a)^{n-1}

           P n ( x ) = 2 ! b 2 + . . . + n ( n 1 ) b n ( x a ) n 2 \ \ \ \ \ \ \ \ \ \ P_n''(x)=2!b_2+...+n(n-1)b_n(x-a)^{n-2}
           . . . \ \ \ \ \ \ \ \ \ \ ...

           P n ( n ) ( x ) = n ! b n \ \ \ \ \ \ \ \ \ \ P^{(n)}_n(x)=n!b_n

P n ( x ) P_n(x) 满足以下条件:
  (1) 当 x = a x=a ,该多项式的值和 f ( x ) f(x) 的函数值相等,则
           f ( a ) = P n ( a ) = b 0 \ \ \ \ \ \ \ \ \ \ f(a)=\textcolor{green}{P_n(a)=b_0}
  (2) 当 x = a x=a ,该多项式的各阶导数值和 f ( x ) f(x) 的各阶导数值相等,则
           f ( a ) = P n ( a ) = b 1 \ \ \ \ \ \ \ \ \ \ f'(a)=\textcolor{green}{P_n'(a)=b_1}

           f ( a ) = P n ( a ) = 2 ! b 2 \ \ \ \ \ \ \ \ \ \ f''(a)=\textcolor{green}{P_n''(a)=2!b_2}
           . . . \ \ \ \ \ \ \ \ \ \ ...
           f ( n ) ( a ) = P n ( n ) ( a ) = n ! b n \ \ \ \ \ \ \ \ \ \ f^{(n)}(a)=\textcolor{green}{P_n^{(n)}(a)=n!b_n}

即得
b 0 = f ( a ) , b 1 = f ( a ) , b 2 = f ( a ) 2 ! , . . . b n = f ( n ) ( a ) n ! b_0=f(a), b_1=f'(a), b_2=\frac{f''(a)}{2!},...b_n=\frac{f^{(n)}(a)}{n!}
代入到公式(1),则有
f ( x ) = f ( a ) + f ( a ) ( x a ) + f ( a ) ( x a ) 2 2 ! + . . . + f ( n ) ( a ) ( x a ) n n ! + R n ( x )       \bm {f(x)=f(a)+f'(a)(x-a)+f''(a)\frac{(x-a)^2}{2!}+...+f^{(n)}(a)\frac{(x-a)^n}{n!}+R_n(x) \ \ \ \ \ }


3. 用微分中值定理证明拉格朗日余项
构造一个函数 g ( t ) g(t)
g ( t ) = f ( x ) f ( t ) f ( t ) ( x t ) f ( t ) ( x t ) 2 2 ! . . . f ( n ) ( t ) ( x t ) n n ! R n ( x ) ( x t ) n + 1 ( x a ) n + 1 g(t)=f(x)-f(t)-f'(t)(x-t)-f''(t)\frac{(x-t)^2}{2!}-...-f^{(n)}(t)\frac{(x-t)^n}{n!}-R_n(x)\frac{(x-t)^{n+1}}{(x-a)^{n+1}}
则有
           g ( x ) = 0 \ \ \ \ \ \ \ \ \ \ g(x)=0
           g ( a ) = R n R n = 0 \ \ \ \ \ \ \ \ \ \ g(a)=R_n-R_n=0
g ( t ) g(t) 求导有

g ( t ) = f ( t ) [ f ( t ) ( 1 ) + f ( t ) ( x t ) ] [ f ( t ) ( x t ) ( 1 ) + f ( t ) ( x t ) 2 2 ! ] . . . [ f ( n ) ( t ) ( x t ) n 1 ( n 1 ) ! ( 1 ) + f ( n + 1 ) ( t ) ( x t ) n n ! ] + R n ( x ) ( n + 1 ) ( x t ) n ( x a ) n + 1 g'(t)=\textcolor{red}{-f'(t)}-[\textcolor{red}{f'(t)(-1)}+\textcolor{darkorange}{f''(t)(x-t)}]-[\textcolor{darkorange}{f''(t)(x-t)(-1)}+\textcolor{blue}{f'''(t)\frac{(x-t)^2}{2!}}]-...\\ -[\textcolor{blue}{f^{(n)}(t)\frac{(x-t)^{n-1}}{(n-1)!}(-1)}+f^{(n+1)}(t)\frac{(x-t)^n}{n!}]+R_n(x)\frac{(n+1)(x-t)^n}{(x-a)^{n+1}}
相邻两项相互抵消,则
g ( t ) = f ( n + 1 ) ( t ) ( x t ) n n ! + R n ( x ) ( n + 1 ) ( x t ) n ( x a ) n + 1 g'(t)=-f^{(n+1)}(t)\frac{(x-t)^n}{n!}+R_n(x)\frac{(n+1)(x-t)^n}{(x-a)^{n+1}}
根据罗尔定理,存在 c ( a , x ) c\in(a,x) ,使得 g ( c ) = 0 g'(c)=0 ,则
g ( c ) = f ( n + 1 ) ( c ) ( x c ) n n ! + R n ( x ) ( n + 1 ) ( x c ) n ( x a ) n + 1 = 0 g'(c)=-f^{(n+1)}(c)\frac{(x-c)^n}{n!}+R_n(x)\frac{(n+1)(x-c)^n}{(x-a)^{n+1}}=0
两边同时除以 ( x c ) n (x-c)^n ,得
( f ( n + 1 ) ( c ) n ! + R n ( x ) ( n + 1 ) ( x a ) n + 1 = 0 -\frac{(f^{(n+1)}(c)}{n!}+R_n(x)\frac{(n+1)}{(x-a)^{n+1}}=0
所以
R n ( x ) = f ( n + 1 ) ( c ) ( n + 1 ) ! ( x a ) n + 1 ,   c ( a , x ) R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},\ c\in(a,x)

参考资料:
1.《高等数学》第六版(上册).高等教育出版社, 2007, p. 275–282.
2.https://www.youtube.com/watch?v=NZBvVkGn8CU

猜你喜欢

转载自blog.csdn.net/MASILEJFOAISEGJIAE/article/details/83034146