机器人手眼标定(eye to hand和eye in hand)

版权声明:本文为博主原创文章,如需转载,请附上文章原文地址。 https://blog.csdn.net/yaked/article/details/77161160

一、背景

机器人视觉应用中,手眼标定是一个非常基础且关键的问题。简单来说手眼标定的目的就是获取机器人坐标系和相机坐标系的关系,最后将视觉识别的结果转移到机器人坐标系下。

手眼标定行业内分为两种形式,根据相机固定的地方不同,如果相机和机器人末端固定在一起,就称之为“眼在手”(eye in hand),如果相机固定在机器人外面的底座上,则称之为“眼在外”(eye to hand)。 

eye to hand
眼在外
eye in hand
​​​​​​眼在手

二、手眼关系的数学描述

1. eye in hand,这种关系下,两次运动,机器人底座和标定板的关系始终不变。求解的量为相机和机器人末端坐标系的位姿关系。

2. eye to hand,这种关系下,两次运动,机器人末端和标定板的位姿关系始终不变。求解的量为相机和机器人底座坐标系之间的位姿关系。

三、AX = XB问题的求解

  • Shiu Y C, Ahmad S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[J]. IEEE Transactions on Robotics & Automation, 1989, 5(1):16-29.
     

相关网上的英文教程 http://math.loyola.edu/~mili/Calibration/index.html其中也有一些AX= XB的matlab代码可以使用。  

ROS 下也有相关的一些package可以利用

https://github.com/IFL-CAMP/easy_handeye

http://wiki.ros.org/handeye

http://visp-doc.inria.fr/doxygen/visp-daily/calibrateTsai_8cpp-example.html#_a0

扫描二维码关注公众号,回复: 3803198 查看本文章

四、其他参考资料

https://blog.csdn.net/u011089570/article/details/47945733 图不错

https://blog.csdn.net/qq_16481211/article/details/79764730 部分halocon代码

https://blog.csdn.net/qq_16481211/article/details/79767100 halocon代码

https://blog.csdn.net/happyjume/article/details/80847822 部分原理

https://blog.csdn.net/zhang970187013/article/details/81098175 UR5 与easy hand eye

一般用“两步法”求解基本方程,即先从基本方程上式求解出旋转部分,再代入求解出平移部分。

https://blog.csdn.net/yunlinwang/article/details/51622143

2017.08.29Kinova_pose_all_10_1.txt

0.475732,0.0143899,0.597381,-0.186261,-0.437222,2.36416
0.351412,0.268087,0.458479,0.0520873,-0.0950319,2.38993
0.251188,0.143736,0.426332,-0.216293,0.057463,-0.931251
0.243135,0.151277,0.464429,0.00644091,-0.039015,0.248319
0.288528,0.144912,0.409375,-0.456906,0.134654,-2.23237
0.240534,0.0828331,0.455197,-0.269758,-0.404214,-0.228711
0.358995,0.19536,0.504774,0.226276,0.237398,1.94334
0.188926,0.0555841,0.4517,0.441706,-0.250536,-0.0724471
0.19245,0.143225,0.489355,0.462128,-0.135995,-0.105669
0.379911,0.047085,0.543727,0.361346,-0.141438,3.0347

2017.08.29Pattern_pose_all_10_1.txt

0.147349 , -0.064831 , 0.509528 , 0.197843 , -0.500065 , 1.792583
-0.106272 , 0.070595 , 0.633095 , 0.078063 , -0.128841 , 1.874043
0.144437 , -0.11512 , 0.602498 , 2.77556 , 2.96201 , 2.070114
-0.042621 , -0.091343 , 0.598773 , 2.95559 , -3.102323 , 0.890111
0.192328 , 0.027207 , 0.552456 , 0.097234 , 0.637267 , 0.328188
0.074878 , -0.10344 , 0.539767 , 2.598053 , 2.800433 , 1.189678
-0.100101 , 0.030685 , 0.526716 , 0.098909 , 0.176179 , 2.323831
0.11135 , -0.055337 , 0.534584 , -2.986191 , 2.769534 , 1.274791
0.018719 , -0.063078 , 0.525738 , -2.923126 , 2.874801 , 1.287745
0.193075 , 0.044841 , 0.52557 , -0.13286 , -0.198836 , 1.280157

Jaco_handeye_rewrite_10.m

%%  Eye to Hand calibration with Ensenso N20 and Kinova robotics arm.
% input : Pattern pose to camera and arm cartesian pose in base coordiante.
% output: The left eye of Ensenso N20 to the arm base coordiante.
% 
% Robot Pose(Homogeneous) stored in cell A. -------------------10 pose
% 
clear;
close all;
clc;

 JacoCartesianPose = importdata('D:\\jaco\\2017.08.29Kinova_pose_all_10_1.txt');


[m,n] = size(JacoCartesianPose); % 10* 6
A = cell(1,m); % 1*10

for i = 1: 1: m
   A{1,i} = transl(JacoCartesianPose(i,1), JacoCartesianPose(i,2), JacoCartesianPose(i,3)) * trotx(JacoCartesianPose(i,4)) * troty(JacoCartesianPose(i,5))* trotz(JacoCartesianPose(i,6));
end

% Pattern Pose(Homogeneous) stored in  cell B.
patternInCamPose = importdata('D:\\jaco\\2017.08.29Pattern_pose_all_10_1.txt');

[melem,nelem] = size(patternInCamPose); % 10*6
B=cell(1,melem);
for x=1:1:melem
   B{1,x} = transl(patternInCamPose(x,1), patternInCamPose(x,2), patternInCamPose(x,3)) * trotx(patternInCamPose(x,4)) * troty(patternInCamPose(x,5))* trotz(patternInCamPose(x,6));
end
%
%机器人位姿获取记得以五角星的形式获取,参照Tsai的论文
n2=m;
TA=cell(1,n2);
TB=cell(1,n2);


%--------------------- 10 -----------------------------------
% for j=[1,6]% Only begin.
% 
%     TA{1,j}=A{1,j+1}*inv(A{1,j});
%     TA{1,j+1}=A{1,j+2}*inv(A{1,j+1});
%     TA{1,j+2}=A{1,j+3}*inv(A{1,j+2});
%     TA{1,j+3}=A{1,j+4}*inv(A{1,j+3});
%     TA{1,j+4}=A{1,j}*inv(A{1,j+4});
%     
%     TB{1,j}=B{1,j+1}*inv(B{1,j});
%     TB{1,j+1}=B{1,j+2}*inv(B{1,j+1});
%     TB{1,j+2}=B{1,j+3}*inv(B{1,j+2});
%     TB{1,j+3}=B{1,j+4}*inv(B{1,j+3});
%     TB{1,j+4}=B{1,j}*inv(B{1,j+4});
% 
% end
% 
% M1=[TA{1,1} TA{1,2} TA{1,3} TA{1,4} TA{1,5} TA{1,6} TA{1,7} TA{1,8} TA{1,9}...
%     TA{1,10}  ];
% M2=[TB{1,1} TB{1,2} TB{1,3} TB{1,4} TB{1,5} TB{1,6} TB{1,7} TB{1,8} TB{1,9}...
%     TB{1,10}   ];

% M1=[TA{1,1} TA{1,2} TA{1,3} TA{1,4} TA{1,5} TA{1,6} TA{1,7} TA{1,8} TA{1,9} ];
% M2=[TB{1,1} TB{1,2} TB{1,3} TB{1,4} TB{1,5} TB{1,6} TB{1,7} TB{1,8} TB{1,9} ];
%--------------------- 10 -----------------------------------

C_Tsai=tsai(M1,M2);
T_Tsai =  (transl(C_Tsai))';
C_Tsai_rad = tr2rpy(C_Tsai);
C_Tsai_rpy_rx_ry_rz =rad2deg(C_Tsai_rad);
fprintf('Tsai(rad) = \n%f, %f, %f, %f, %f, %f\n',T_Tsai(1,1), T_Tsai(1,2), T_Tsai(1,3), C_Tsai_rad(1,1), C_Tsai_rad(1,2), C_Tsai_rad(1,3));
fprintf('Tsai(deg) = \n%f, %f, %f, %f, %f, %f\n\n',T_Tsai(1,1), T_Tsai(1,2), T_Tsai(1,3), C_Tsai_rpy_rx_ry_rz(1,1), C_Tsai_rpy_rx_ry_rz(1,2), C_Tsai_rpy_rx_ry_rz(1,3));

C_Shiu=shiu(M1,M2);
T_Shiu= [C_Shiu(1,4) C_Shiu(2,4) C_Shiu(3,4)] ;
C_Shiu_rad = tr2rpy(C_Shiu);
C_Shiu_rpy_rx_ry_rz = rad2deg(C_Shiu_rad);
fprintf('Shiu(rad) = \n%f, %f, %f, %f, %f, %f\n',T_Shiu(1,1), T_Shiu(1,2), T_Shiu(1,3), C_Shiu_rad(1,1), C_Shiu_rad(1,2), C_Shiu_rad(1,3));
fprintf('Shiu(deg) = \n%f, %f, %f, %f, %f, %f\n\n',T_Shiu(1,1), T_Shiu(1,2), T_Shiu(1,3), C_Shiu_rpy_rx_ry_rz(1,1), C_Shiu_rpy_rx_ry_rz(1,2), C_Shiu_rpy_rx_ry_rz(1,3));

C_Ijrr=ijrr1995(M1,M2);
T_ijrr= [C_Ijrr(1,4) C_Ijrr(2,4) C_Ijrr(3,4)] ;
C_ijrr_rad = tr2rpy(C_Ijrr);
C_ijrr_rpy_rx_ry_rz = rad2deg(C_ijrr_rad);
fprintf('Ijrr(rad) = \n%f, %f, %f, %f, %f, %f\n',C_Ijrr(1,1), C_Ijrr(1,2), C_Ijrr(1,3), C_ijrr_rad(1,1), C_ijrr_rad(1,2), C_ijrr_rad(1,3));
fprintf('Ijrr(deg) = \n%f, %f, %f, %f, %f, %f\n\n',C_Ijrr(1,1), C_Ijrr(1,2), C_Ijrr(1,3), C_ijrr_rpy_rx_ry_rz(1,1), C_ijrr_rpy_rx_ry_rz(1,2), C_ijrr_rpy_rx_ry_rz(1,3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% robotHcam  =[ -0.076, -0.674, 0.760631455868699, 178.7221124879378, -0.0735038591212, -11.5304192925905 ];
% robotHcam1 = transl(robotHcam(1,1), robotHcam(1,2), robotHcam(1,3)) * trotx(robotHcam(1,4),'deg') * troty(robotHcam(1,5),  'deg')* trotz(robotHcam(1,6), 'deg')* trotx(90,'deg'); % rotx 90
robotHcam  =[ 0.013, -0.94, 0.86, -90.0, 0.0, 0.0 ];
% robotHcam  =[ 0.25, 0.22, 1.1, 180.0, 0.0, 90.0 ]; % bind to the stack
 robotHcam1 = transl(robotHcam(1,1), robotHcam(1,2), robotHcam(1,3)) * trotx(robotHcam(1,4),'deg') * troty(robotHcam(1,5),  'deg')* trotz(robotHcam(1,6), 'deg');
fprintf('robotHcam used in Program(rad) = \n%f, %f, %f, %f, %f, %f\n',robotHcam(1,1), robotHcam(1,2), robotHcam(1,3), deg2rad(robotHcam(1,4)), deg2rad(robotHcam(1,5)), deg2rad(robotHcam(1,6)));
fprintf('robotHcam used in Program(deg) = \n%f, %f, %f, %f, %f, %f\n\n',robotHcam(1,1), robotHcam(1,2), robotHcam(1,3), robotHcam(1,4), robotHcam(1,5), robotHcam(1,6));

 t1 = eye(4);
trplot(t1,'frame','R','arrow','width', '1', 'color', 'r', 'text_opts', {'FontSize', 10, 'FontWeight', 'light'},'view', [-0.3 0.5 0.6],'thick',0.9,'dispar',0.8 );%  Display Robot coordinate
hold on;

trplot(robotHcam1,'frame','C',  'color', 'black'); %  Display Camera coordinate used in Program

trplot(C_Tsai,'frame','T',  'color', 'b'); %  Display Tsai
trplot(C_Shiu,'frame','S',  'color', 'g'); %  Display Shiu
clc;
clear;
close all;

% D:\jaco\ConsoleApplication1/get_saveCartesian.cpp——Kinova_pose.txt
robotAeef = [-0.0860801, -0.641813, -0.0987199, 3.13316, 0.000389122, -0.297456];
robotBeef = transl(robotAeef(1,1), robotAeef(1,2), robotAeef(1,3)) * trotx(robotAeef(1,4)) * troty(robotAeef(1,5))* trotz(robotAeef(1,6));

% D:\jaco\C#\nxCsExamples.sln —— Pattern_pose_all.txt
camAobj = [0.011651 , -0.069043 , 0.857845 , -3.12825 , 3.137609 , 3.048224];

camBobj =transl(camAobj(1,1), camAobj(1,2), camAobj(1,3)) * trotx(camAobj(1,4)) * troty(camAobj(1,5))* trotz(camAobj(1,6));
robotAcam = robotBeef * inv(camBobj);

robotAcam_Trans0 = (transl(robotAcam))';
 fprintf('robotAcam_T = \n%f, %f, %f\n',robotAcam_Trans0(1,1), robotAcam_Trans0(1,2), robotAcam_Trans0(1,3));
robotAcam_R_rad = tr2rpy((robotAcam));
fprintf('robotAcam_R(rad) = \n%f, %f, %f\n',robotAcam_R_rad(1,1), robotAcam_R_rad(1,2), robotAcam_R_rad(1,3));
R_degree0 = rad2deg(robotAcam_R_rad);
fprintf('robotAcam_R(deg) = \n%f, %f, %f\n\n',R_degree0(1,1), R_degree0(1,2), R_degree0(1,3));
% [theta, v] = tr2angvec(robotAcam)

% robotAcam = [
% robotAcam(1, 1) robotAcam(1, 2) robotAcam(1, 3) -0.097;
% robotAcam(2, 1) robotAcam(2, 2) robotAcam(2, 3) -0.695;
% robotAcam(3, 1) robotAcam(3,2) robotAcam(3, 3) robotAcam(3, 4);
% 0 0 0 1;
% ]
% Trans1 = (transl(robotAcam))'
% R_rad1 = tr2rpy((robotAcam))
% R_degree1 = rad2deg(R_rad1)

fprintf('===============Test point===============\n');
%  camAobj2= [   0.011634 , -0.068815 , 0.858039 , -3.124779 , 3.139759 , 3.046957]; % Workspace home.
 camAobj2= [  -0.102468 , -0.059197 , 0.858 , -3.127464 , 3.136249 , 3.053341
];

camBobj2 = transl(camAobj2(1,1), camAobj2(1,2), camAobj2(1,3)) * trotx(camAobj2(1,4)) * troty(camAobj2(1,5))* trotz(camAobj2(1,6));
robotAobj2 = robotAcam * camBobj2;
 robotAobj2_T = (transl(robotAobj2))';
 fprintf('robotAobj2_T = \n%f, %f, %f\n',robotAobj2_T(1,1), robotAobj2_T(1,2), robotAobj2_T(1,3));
robotAobj2_R_rad = tr2rpy((robotAobj2));
fprintf('robotAobj2_R(rad) = \n%f, %f, %f\n',robotAobj2_R_rad(1,1), robotAobj2_R_rad(1,2), robotAobj2_R_rad(1,3));
robotAobj2_R_degree = rad2deg(robotAobj2_R_rad);
fprintf('robotAobj2_R(deg) = \n%f, %f, %f\n',robotAobj2_R_degree(1,1), robotAobj2_R_degree(1,2), robotAobj2_R_degree(1,3));

猜你喜欢

转载自blog.csdn.net/yaked/article/details/77161160