多线程学习笔记十六——java中的线程池

使用线程池的好处:

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,
还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用
线程池,必须对其实现原理了如指掌。

线程池实现原理:

1)如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤
需要获取全局锁)。
2)如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
3)如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执
行这一步骤需要获取全局锁)。
4)如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用
RejectedExecutionHandler.rejectedExecution()方法。

线程池的使用:

new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime,
milliseconds,runnableTaskQueue, handler);
创建一个线程池时需要输入几个参数,如下。
1)corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线
程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任
务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,
线程池会提前创建并启动所有基本线程。
2)runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几
个阻塞队列。
·ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按FIFO(先进先出)原
则对元素进行排序。
·LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO排序元素,吞吐量通
常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
·SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用
移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于Linked-BlockingQueue,静态工
厂方法Executors.newCachedThreadPool使用了这个队列。
·PriorityBlockingQueue:一个具有优先级的无限阻塞队列。
3)maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并
且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是,如
果使用了无界的任务队列这个参数就没什么效果。
new ThreadFactoryBuilder().setNameFormat(“XX-task-%d”).build();
4)RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状
态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法
处理新任务时抛出异常。在JDK 1.5中Java线程池框架提供了以下4种策略。
·AbortPolicy:直接抛出异常。
·CallerRunsPolicy:只用调用者所在线程来运行任务。
·DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
·DiscardPolicy:不处理,丢弃掉。
当然,也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录
日志或持久化存储不能处理的任务。
5)keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以,
如果任务很多,并且每个任务执行的时间比较短,可以调大时间,提高线程的利用率。
6)TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS)、小时(HOURS)、分钟
(MINUTES)、毫秒(MILLISECONDS)、微秒(MICROSECONDS,千分之一毫秒)和纳秒
(NANOSECONDS,千分之一微秒)。

线程池的提交

submit():执行有返回值的任务,返回一个future对象。源码如下:

 <T> Future<T> submit(Callable<T> task);

execute():执行没有返回值的任务。源码如下:

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

合理的配置线程池

。CPU密集型任务应配置尽可能小的
线程,如配置N cpu +1个线程的线程池。由于IO密集型任务线程并不是一直在执行任务,则应配
置尽可能多的线程,如2*N cpu 。建议使用有界队列。

线程池的监控

如果在系统中大量使用线程池,则有必要对线程池进行监控,方便在出现问题时,可以根
据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的
时候可以使用以下属性。
·taskCount:线程池需要执行的任务数量。
·completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于taskCount。
·largestPoolSize:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是
否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。
·getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销
毁,所以这个大小只增不减。
·getActiveCount:获取活动的线程数。
通过扩展线程池进行监控。可以通过继承线程池来自定义线程池,重写线程池的
beforeExecute、afterExecute和terminated方法,也可以在任务执行前、执行后和线程池关闭前执
行一些代码来进行监控。例如,监控任务的平均执行时间、最大执行时间和最小执行时间等。
这几个方法在线程池里是空方法。

猜你喜欢

转载自blog.csdn.net/shidebin/article/details/82687075