HashMap实现原理和扩容及高版本优化

版权声明:本文为博主原创文章,转载希望能注明出处,感谢。 https://blog.csdn.net/u010126792/article/details/82849414

HashMap的实现原理面试简单解答

补充面试题:为什么hashcode和equals一般同时重写。

hashmap如何判断出现了碰撞,然后存储在链表中。

hash算法。

这里不剖析源码只简单讲解:

1原理简单解析

数组结构

HashMap内部结构为数组加链表方式,这里可以知道HashMap解决冲突的方法是链地址法,

Node<K,V>[] table,Node节点里包括hash值,key,value,nextNode,HashMap中key值得Hash值得计算

return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16)(1.8jdk);

上面公式用到了key的hashCode值,每种类型的key都会重写

hashCode的计算方法,例如String:(重写了hashCode一般需要重写equals)

 public int hashCode() {
        int h = hash;
        final int len = length();
        if (h == 0 && len > 0) {
            for (int i = 0; i < len; i++) {
                h = 31 * h + charAt(i);
            }
            hash = h;
        }
        return h;
    }
(key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16)计算key的hash值最终会比较小,右移16位之后亦或使最终结果包含了高位和低位特性,碰撞的几率会更小。
最终会利用hash值和长度进行求余,确定key的位置。
V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    //n 是长度,然后& hash值得到key在数组中的位置
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
           
    }

 链表结构

在putVal函数中如果判断数组中已经存在node,此时调用putTreeVal函数把node放在node的链表中,如果链表过长会转换成红黑树存储

2 HashMap扩容

综合load factor和长度,如果需要扩容会调用resize函数,将原来的长度扩大一倍,根据扩容后的长度建立新的数组,然后把旧的数据放入到新数组中。默认大小为16,负载因子和默认大小都可以设置。

final Node<K,V>[] resize() {
//旧数组
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
//旧长度
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
//一般情况扩容走这里
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
//得到新的长度
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
//赋值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
//建立新数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
//拷贝旧数组到新数组
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

hash算法中解决冲突的办法有很多,开放地址法,链地址发,再hash法等。

3 优化

/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 */
static final int TREEIFY_THRESHOLD = 8;

大致意思就是当list链表长度超过8时就用tree树进行存储。

 /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
 /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

上面是优化的具体代码,简单说就是把list转成了红黑树,查找效率更高。

猜你喜欢

转载自blog.csdn.net/u010126792/article/details/82849414
今日推荐