tensorflow随笔-reader(5)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010255642/article/details/82764646

读取数据

注意:将数据输入tensorflow程序的首选方法是使用tf.data API。

有四种方法可以将数据导入一个TensorFlow程序中:

tf.data API: 容易构造复杂的输入管道。(首选方法)

Feeding: Python代码在运行每个步骤时提供数据。

QueueRunner:一个基于队列的输入管道从张量流程图开头的文件中读取数据。

Preloaded data:预加载数据:张量图中的一个常量或变量保存所有数据(对于小数据集)。

tf.data API

data API使您能够从不同的输入/文件格式提取和预处理数据,并在数据集中应用批处理、变换和映射函数等转换。这是旧输入法的改进版本——输入和排队——为了历史目的,下面将对此进行描述。

Feeding

"Feeding" 是向张量流程序提供数据的最低效的方式,并且只能用于小型实验和调试。

张量流的进给机制允许你将数据注入到计算图中的任何张量中。因此,Python计算可以将数据直接输入到图中。

通过feed_dict参数向启动计算的run()或eval()调用提供提要数据。

with tf.Session():
  input = tf.placeholder(tf.float32)
  classifier = ...
  print(classifier.eval(feed_dict={input: my_python_preprocessing_fn()}))

虽然可以用提要数据(包括变量和常量)替换任何张量,但最佳实践是使用tf.placeholder。占位符的存在只是为了作为提要的目标。它没有初始化,也不包含任何数据。如果一个占位符在没有提要的情况下执行,它会生成一个错误,所以您不会忘记feed。

一个使用placeholder,feeding训练MNIST数据例子:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Trains and Evaluates the MNIST network using a feed dictionary."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=missing-docstring
import argparse
import os
import sys
import time

from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import mnist

# Basic model parameters as external flags.
FLAGS = None


def placeholder_inputs(batch_size):
  """Generate placeholder variables to represent the input tensors.
  These placeholders are used as inputs by the rest of the model building
  code and will be fed from the downloaded data in the .run() loop, below.
  Args:
    batch_size: The batch size will be baked into both placeholders.
  Returns:
    images_placeholder: Images placeholder.
    labels_placeholder: Labels placeholder.
  """
  # Note that the shapes of the placeholders match the shapes of the full
  # image and label tensors, except the first dimension is now batch_size
  # rather than the full size of the train or test data sets.
  images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
                                                         mnist.IMAGE_PIXELS))
  labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
  return images_placeholder, labels_placeholder


def fill_feed_dict(data_set, images_pl, labels_pl):
  """Fills the feed_dict for training the given step.
  A feed_dict takes the form of:
  feed_dict = {
      <placeholder>: <tensor of values to be passed for placeholder>,
      ....
  }
  Args:
    data_set: The set of images and labels, from input_data.read_data_sets()
    images_pl: The images placeholder, from placeholder_inputs().
    labels_pl: The labels placeholder, from placeholder_inputs().
  Returns:
    feed_dict: The feed dictionary mapping from placeholders to values.
  """
  # Create the feed_dict for the placeholders filled with the next
  # `batch size` examples.
  images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
                                                 FLAGS.fake_data)
  feed_dict = {
      images_pl: images_feed,
      labels_pl: labels_feed,
  }
  return feed_dict


def do_eval(sess,
            eval_correct,
            images_placeholder,
            labels_placeholder,
            data_set):
  """Runs one evaluation against the full epoch of data.
  Args:
    sess: The session in which the model has been trained.
    eval_correct: The Tensor that returns the number of correct predictions.
    images_placeholder: The images placeholder.
    labels_placeholder: The labels placeholder.
    data_set: The set of images and labels to evaluate, from
      input_data.read_data_sets().
  """
  # And run one epoch of eval.
  true_count = 0  # Counts the number of correct predictions.
  steps_per_epoch = data_set.num_examples // FLAGS.batch_size
  num_examples = steps_per_epoch * FLAGS.batch_size
  for step in xrange(steps_per_epoch):
    feed_dict = fill_feed_dict(data_set,
                               images_placeholder,
                               labels_placeholder)
    true_count += sess.run(eval_correct, feed_dict=feed_dict)
  precision = float(true_count) / num_examples
  print('Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %
        (num_examples, true_count, precision))


def run_training():
  """Train MNIST for a number of steps."""
  # Get the sets of images and labels for training, validation, and
  # test on MNIST.
  data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)

  # Tell TensorFlow that the model will be built into the default Graph.
  with tf.Graph().as_default():
    # Generate placeholders for the images and labels.
    images_placeholder, labels_placeholder = placeholder_inputs(
        FLAGS.batch_size)

    # Build a Graph that computes predictions from the inference model.
    logits = mnist.inference(images_placeholder,
                             FLAGS.hidden1,
                             FLAGS.hidden2)

    # Add to the Graph the Ops for loss calculation.
    loss = mnist.loss(logits, labels_placeholder)

    # Add to the Graph the Ops that calculate and apply gradients.
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels_placeholder)

    # Build the summary Tensor based on the TF collection of Summaries.
    summary = tf.summary.merge_all()

    # Add the variable initializer Op.
    init = tf.global_variables_initializer()

    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()

    # Create a session for running Ops on the Graph.
    sess = tf.Session()

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)

    # And then after everything is built:

    # Run the Op to initialize the variables.
    sess.run(init)

    # Start the training loop.
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()

      # Fill a feed dictionary with the actual set of images and labels
      # for this particular training step.
      feed_dict = fill_feed_dict(data_sets.train,
                                 images_placeholder,
                                 labels_placeholder)

      # Run one step of the model.  The return values are the activations
      # from the `train_op` (which is discarded) and the `loss` Op.  To
      # inspect the values of your Ops or variables, you may include them
      # in the list passed to sess.run() and the value tensors will be
      # returned in the tuple from the call.
      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)

      duration = time.time() - start_time

      # Write the summaries and print an overview fairly often.
      if step % 100 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.
        summary_str = sess.run(summary, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)
        summary_writer.flush()

      # Save a checkpoint and evaluate the model periodically.
      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
        saver.save(sess, checkpoint_file, global_step=step)
        # Evaluate against the training set.
        print('Training Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.train)
        # Evaluate against the validation set.
        print('Validation Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.validation)
        # Evaluate against the test set.
        print('Test Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.test)


def main(_):
  if tf.gfile.Exists(FLAGS.log_dir):
    tf.gfile.DeleteRecursively(FLAGS.log_dir)
  tf.gfile.MakeDirs(FLAGS.log_dir)
  run_training()


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--learning_rate',
      type=float,
      default=0.01,
      help='Initial learning rate.'
  )
  parser.add_argument(
      '--max_steps',
      type=int,
      default=2000,
      help='Number of steps to run trainer.'
  )
  parser.add_argument(
      '--hidden1',
      type=int,
      default=128,
      help='Number of units in hidden layer 1.'
  )
  parser.add_argument(
      '--hidden2',
      type=int,
      default=32,
      help='Number of units in hidden layer 2.'
  )
  parser.add_argument(
      '--batch_size',
      type=int,
      default=100,
      help='Batch size.  Must divide evenly into the dataset sizes.'
  )
  parser.add_argument(
      '--input_data_dir',
      type=str,
      default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
                           'tensorflow/mnist/input_data'),
      help='Directory to put the input data.'
  )
  parser.add_argument(
      '--log_dir',
      type=str,
      default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
                           'tensorflow/mnist/logs/fully_connected_feed'),
      help='Directory to put the log data.'
  )
  parser.add_argument(
      '--fake_data',
      default=False,
      help='If true, uses fake data for unit testing.',
      action='store_true'
  )

  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

 

猜你喜欢

转载自blog.csdn.net/u010255642/article/details/82764646
今日推荐