线程同步的7种同步方式

为何要使用同步?

  • java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),
    将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,
    从而保证了该变量的唯一性和准确性。

1.同步方法
即有synchronized关键字修饰的方法。
由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,
内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。
代码如:

public synchronized void save(){}

注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类

2.同步代码块
即有synchronized关键字修饰的语句块。 被该关键字修饰的语句块会自动被加上内置锁,从而实现同步
代码如:

synchronized(object){ 
}

注:同步是一种高开销的操作,因此应该尽量减少同步的内容。 通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。

代码实例:

package com.xhj.thread;

    /**
     * 线程同步的运用
     * 
     * @author XIEHEJUN
     * 
     */
    public class SynchronizedThread {

        class Bank {

            private int account = 100;

            public int getAccount() {
                return account;
            }

            /**
             * 用同步方法实现
             * 
             * @param money
             */
            public synchronized void save(int money) {
                account += money;
            }

            /**
             * 用同步代码块实现
             * 
             * @param money
             */
            public void save1(int money) {
                synchronized (this) {
                    account += money;
                }
            }
        }

        class NewThread implements Runnable {
            private Bank bank;

            public NewThread(Bank bank) {
                this.bank = bank;
            }

            @Override
            public void run() {
                for (int i = 0; i < 10; i++) {
                    // bank.save1(10);
                    bank.save(10);
                    System.out.println(i + "账户余额为:" + bank.getAccount());
                }
            }

        }

        /**
         * 建立线程,调用内部类
         */
        public void useThread() {
            Bank bank = new Bank();
            NewThread new_thread = new NewThread(bank);
            System.out.println("线程1");
            Thread thread1 = new Thread(new_thread);
            thread1.start();
            System.out.println("线程2");
            Thread thread2 = new Thread(new_thread);
            thread2.start();
        }

        public static void main(String[] args) {
            SynchronizedThread st = new SynchronizedThread();
            st.useThread();
        }

    }

3.使用特殊域变量(volatile)实现线程同步
不推荐用了,没多大用处,容易出错,看这篇博文:https://blog.csdn.net/qq_22771739/article/details/82792084

4.使用重入锁实现线程同步
在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。
ReentrantLock类是可重入、互斥、实现了Lock接口的锁,
它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力
ReenreantLock类的常用方法有:

ReentrantLock() : 创建一个ReentrantLock实例 
lock() : 获得锁 
unlock() : 释放锁 

注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用
例如,在上面例子的基础上,改写后的代码为:

		//只给出要修改的代码,其余代码与上同
        class Bank {
            
            private int account = 100;
            //需要声明这个锁
            private Lock lock = new ReentrantLock();
            public int getAccount() {
                return account;
            }
            //这里不再需要synchronized 
            public void save(int money) {
                lock.lock();
                try{
                    account += money;
                }finally{
                    lock.unlock();
                }
                
            }
        }

注:关于Lock对象和synchronized关键字的选择:

  • a.最好两个都不用,使用一种java.util.concurrent包提供的机制,
    能够帮助用户处理所有与锁相关的代码
  • b.如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码
  • c.如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁

5.使用局部变量实现线程同步
如果使用ThreadLocal管理变量,则每一个使用该变量的线程都获得该变量的副本,
副本之间相互独立,这样每一个线程都可以随意修改自己的变量副本,而不会对其他线程产生影响。
ThreadLocal 类的常用方法:

    ThreadLocal() : 创建一个线程本地变量 
    get() : 返回此线程局部变量的当前线程副本中的值 
    initialValue() : 返回此线程局部变量的当前线程的"初始值" 
    set(T value) : 将此线程局部变量的当前线程副本中的值设置为value

例如,在上面例子基础上,修改后的代码为:

		//只改Bank类,其余代码与上同
        public class Bank{
            //使用ThreadLocal类管理共享变量account
            private static ThreadLocal<Integer> account = new ThreadLocal<Integer>(){
                @Override
                protected Integer initialValue(){
                    return 100;
                }
            };
            public void save(int money){
                account.set(account.get()+money);
            }
            public int getAccount(){
                return account.get();
            }
        }

注:ThreadLocal与同步机制

  • a.ThreadLocal与同步机制都是为了解决多线程中相同变量的访问冲突问题。
  • b.前者采用以"空间换时间"的方法,后者采用以"时间换空间"的方式

6.使用阻塞队列实现线程同步

  • 前面5种同步方式都是在底层实现的线程同步,但是我们在实际开发当中,应当尽量远离底层结构。
    使用javaSE5.0版本中新增的java.util.concurrent包将有助于简化开发。
    本小节主要是使用LinkedBlockingQueue来实现线程的同步
    LinkedBlockingQueue是一个基于已连接节点的,范围任意的blocking queue。
    队列是先进先出的顺序(FIFO),关于队列以后会详细讲解~

  • LinkedBlockingQueue 类常用方法
    LinkedBlockingQueue() : 创建一个容量为Integer.MAX_VALUE的LinkedBlockingQueue
    put(E e) : 在队尾添加一个元素,如果队列满则阻塞
    size() : 返回队列中的元素个数
    take() : 移除并返回队头元素,如果队列空则阻塞

代码实例:
实现商家生产商品和买卖商品的同步

package test;
import java.util.Random;
import java.util.concurrent.LinkedBlockingQueue;

/**
 * 用阻塞队列实现线程同步 LinkedBlockingQueue的使用
 * 
 * @author XIEHEJUN
 * 
 */
public class BlockingSynchronizedThread {
    /**
     * 定义一个阻塞队列用来存储生产出来的商品
     */
    private LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<Integer>();
    /**
     * 定义生产商品个数
     */
    private static final int size = 10;
    /**
     * 定义启动线程的标志,为0时,启动生产商品的线程;为1时,启动消费商品的线程
     */
    private int flag = 0;

    private class LinkBlockThread implements Runnable {
        @Override
        public void run() {
            int new_flag = flag++;
            System.out.println("启动线程 " + new_flag);
            if (new_flag == 0) {
                for (int i = 0; i < size; i++) {
                    int b = new Random().nextInt(255);
                    System.out.println("生产商品:" + b + "号");
                    try {
                        queue.put(b);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.println("仓库中还有商品:" + queue.size() + "个");
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            } else {
                for (int i = 0; i < size / 2; i++) {
                    try {
                        int n = queue.take();
                        System.out.println("消费者买去了" + n + "号商品");
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.println("仓库中还有商品:" + queue.size() + "个");
                    try {
                        Thread.sleep(100);
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                }
            }
        }
    }

    public static void main(String[] args) {
        BlockingSynchronizedThread bst = new BlockingSynchronizedThread();
        LinkBlockThread lbt = bst.new LinkBlockThread();
        Thread thread1 = new Thread(lbt);
        Thread thread2 = new Thread(lbt);
        thread1.start();
        thread2.start();

    }

}

用阻塞队列的方式也不难实现累加功能

6.使用阻塞队列实现线程同步
详细查看 https://www.cnblogs.com/senlinyang/p/7856339.html

猜你喜欢

转载自blog.csdn.net/qq_22771739/article/details/82803503