LDA和PCA算法

1. 问题

之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。

比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。

再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢?

2. 线性判别分析(二类情况)

回顾我们之前的logistic回归方法,给定m个n维特征的训练样例clip_image002(i从1到m),每个clip_image004对应一个类标签clip_image006。我们就是要学习出参数clip_image008,使得clip_image010(g是sigmoid函数)。

现在只考虑二值分类情况,也就是y=1或者y=0。

为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例,clip_image012,其中有clip_image014个样例属于类别clip_image016,另外clip_image018个样例属于类别clip_image020

现在我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够“清晰”地反映在低维数据上,也就是这一维就能决定每个样例的类别。

我们将这个最佳的向量称为w(d维),那么样例x(d维)到w上的投影可以用下式来计算

clip_image022

这里得到的y值不是0/1值,而是x投影到直线上的点到原点的距离。

当x是二维的,我们就是要找一条直线(方向为w)来做投影,然后寻找最能使样本点分离的直线。如下图:

clip_image024

从直观上来看,右图比较好,可以很好地将不同类别的样本点分离。

接下来我们从定量的角度来找到这个最佳的w。

首先我们寻找每类样例的均值(中心点),这里i只有两个

clip_image026

由于x到w投影后的样本点均值为

clip_image028

由此可知,投影后的的均值也就是样本中心点的投影。

什么是最佳的直线(w)呢?我们首先发现,能够使投影后的两类样本中心点尽量分离的直线是好的直线,定量表示就是:

clip_image030

J(w)越大越好。

但是只考虑J(w)行不行呢?不行,看下图

clip_image031

样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。

我们使用另外一个度量值,称作散列值(scatter),对投影后的类求散列值,如下

clip_image033

从公式中可以看出,只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。

而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值差越大越好,散列值越小越好。正好,我们可以使用J(w)和S来度量,最终的度量公式是

clip_image035

接下来的事就比较明显了,我们只需寻找使J(w)最大的w即可。

先把散列值公式展开

clip_image037

我们定义上式中中间那部分

clip_image039

这个公式的样子不就是少除以样例数的协方差矩阵么,称为散列矩阵(scatter matrices)

我们继续定义

clip_image041

clip_image043称为Within-class scatter matrix。

那么回到上面clip_image045的公式,使用clip_image047替换中间部分,得

clip_image049

clip_image051

然后,我们展开分子

clip_image052

clip_image054称为Between-class scatter,是两个向量的外积,虽然是个矩阵,但秩为1。

那么J(w)最终可以表示为

clip_image056

在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。因此我们打算令clip_image058,那么加入拉格朗日乘子后,求导

clip_image059

其中用到了矩阵微积分,求导时可以简单地把clip_image061当做clip_image063看待。

如果clip_image043[1]可逆,那么将求导后的结果两边都乘以clip_image065,得

clip_image066

这个可喜的结果就是w就是矩阵clip_image068的特征向量了。

这个公式称为Fisher linear discrimination。

等等,让我们再观察一下,发现前面clip_image070的公式

clip_image072

那么

clip_image074

代入最后的特征值公式得

clip_image076

由于对w扩大缩小任何倍不影响结果,因此可以约去两边的未知常数clip_image078clip_image080,得到

clip_image082

至此,我们只需要求出原始样本的均值和方差就可以求出最佳的方向w,这就是Fisher于1936年提出的线性判别分析。

看上面二维样本的投影结果图:

clip_image083

3. 线性判别分析(多类情况)

前面是针对只有两个类的情况,假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?

我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,需要K维向量(或者叫做基向量)来做投影。

将这K维向量表示为clip_image085

我们将样本点在这K维向量投影后结果表示为clip_image087,有以下公式成立

clip_image089

clip_image091

为了像上节一样度量J(w),我们打算仍然从类间散列度和类内散列度来考虑。

当样本是二维时,我们从几何意义上考虑:

clip_image092

其中clip_image094clip_image043[2]与上节的意义一样,clip_image096是类别1里的样本点相对于该类中心点clip_image098的散列程度。clip_image100变成类别1中心点相对于样本中心点clip_image102的协方差矩阵,即类1相对于clip_image102[1]的散列程度。

clip_image043[3]

clip_image104

clip_image106的计算公式不变,仍然类似于类内部样本点的协方差矩阵

clip_image108

clip_image054[1]需要变,原来度量的是两个均值点的散列情况,现在度量的是每类均值点相对于样本中心的散列情况。类似于将clip_image094[1]看作样本点,clip_image102[2]是均值的协方差矩阵,如果某类里面的样本点较多,那么其权重稍大,权重用Ni/N表示,但由于J(w)对倍数不敏感,因此使用Ni。

clip_image110

其中

clip_image112

clip_image102[3]是所有样本的均值。

上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。下面我们看样本点投影后的公式改变:

这两个是第i类样本点在某基向量上投影后的均值计算公式。

clip_image114

clip_image116

下面两个是在某基向量上投影后的clip_image043[4]clip_image070[1]

clip_image118

clip_image120

其实就是将clip_image102[4]换成了clip_image122

综合各个投影向量(w)上的clip_image124clip_image126,更新这两个参数,得到

clip_image128

clip_image130

W是基向量矩阵,clip_image124[1]是投影后的各个类内部的散列矩阵之和,clip_image126[1]是投影后各个类中心相对于全样本中心投影的散列矩阵之和。

回想我们上节的公式J(w),分子是两类中心距,分母是每个类自己的散列度。现在投影方向是多维了(好几条直线),分子需要做一些改变,我们不是求两两样本中心距之和(这个对描述类别间的分散程度没有用),而是求每类中心相对于全样本中心的散列度之和。

然而,最后的J(w)的形式是

clip_image132

由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(此处我感觉有点牵强,道理不是那么有说服力)。

整个问题又回归为求J(w)的最大值了,我们固定分母为1,然后求导,得出最后结果(我翻查了很多讲义和文章,没有找到求导的过程)

clip_image134

与上节得出的结论一样

clip_image136

最后还归结到了求矩阵的特征值上来了。首先求出clip_image138的特征值,然后取前K个特征向量组成W矩阵即可。

注意:由于clip_image070[2]中的clip_image140 秩为1,因此clip_image070[3]的秩至多为C(矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个clip_image094[2]后,最后一个clip_image142可以有前面的clip_image094[3]来线性表示,因此clip_image070[4]的秩至多为C-1。那么K最大为C-1,即特征向量最多有C-1个。特征值大的对应的特征向量分割性能最好。

由于clip_image138[1]不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。

  关于进行多类分类的问题:一种方法是“one against the rest “方法构造C个分类器(每个分类器的作用都是二分的),然后把这些结果综合起来;另一种方法是成对分类,每一个分类器把两个类别进行分开(产生(C(C-1)/2)个类.... (参考维基百科

  

  构造变换矩阵时为避免出现SW为奇异矩阵,样本数量要大于样本的维数。

向量投影

给定一个向量u和v,求u在v上的投影向量,如下图。

假设u在v上的投影向量是u’,且向量u和v的夹角为theta。一个向量有两个属性,大小和方向,我们先确定u’的大小(即长度,或者模),从u的末端做v的垂线,那么d就是u’的长度。而u’和v的方向是相同的,v的方向v/|v|也就是u’的方向。所以有

 (1)

再求d的长度。

 (2)

最后求cos(theta)

 (3)

联合求解方程(1)(2)(3)得到

这就是最终的投影向量。

而这个向量的长度d是

============================

以下是旧的推导,也保留。

猜你喜欢

转载自xjnine.iteye.com/blog/2291310