素数测试, poj1811

题目链接:http://poj.org/problem?id=1811

题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数。

求大整数最小质因数的算法没看懂,不打算看了,直接贴代码,以后当模版用。

数据比较大,只能先用Miller_Rabin算法进行素数判断。

在用Pollard_rho分解因子。

复制代码

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <algorithm>
typedef long long ll;
#define Time 15 //随机算法判定次数,Time越大,判错概率越小
using namespace std;
ll n,ans,factor[10001];//质因数分解结果(刚返回时是无序的)
ll tol;//质因数的个数,数组下标从0开始
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
long long mult_mod(ll a,ll b,ll c)//计算 (a*b)%c.   a,b都是ll的数,直接相乘可能溢出的
{
    a%=c;//                           利用二分思想减少相乘的时间
    b%=c;
    ll ret=0;
    while(b)
    {
        if(b&1)
        {
            ret+=a;
            ret%=c;
        }
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}
ll pow_mod(ll x,ll n,ll mod)//x^n%n
{
    if(n==1)return x%mod;
    x%=mod;
    ll tmp=x;
    ll ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}
//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
//二次探测
bool check(ll a,ll n,ll x,ll t)
{
    ll ret=pow_mod(a,x,n);
    ll last=ret;
    for(int i=1; i<=t; i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(ll n)
{
    if(n<2)return false;
    if(n==2||n==3||n==5||n==7)return true;
    if(n==1||(n%2==0)||(n%3==0)||(n%5==0)||(n%7==0)) return false;//偶数
    ll x=n-1;
    ll t=0;
    while((x&1)==0)
    {
        x>>=1;
        t++;
    }
    for(int i=0; i<Time; i++)
    {
        ll a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}
//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
ll gcd(ll a,ll b)
{
    if(a==0)return 1;
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}
ll Pollard_rho(ll x,ll c)
{
    ll i=1,k=2;
    ll x0=rand()%x;
    ll y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k)
        {
            y=x0;
            k+=k;
        }
    }
}
//对n进行素因子分解
void findfac(ll n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    ll p=n;
    while(p>=n) p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);//递归调用
    findfac(n/p);
}
int main()
{
    int T;
    //srand(time(NULL));加上RE不懂
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld",&n);//(n>=2)
        /*if(n==1)
        {
            printf("1\n");
            continue;
        }*/
        if(Miller_Rabin(n))
        {
            printf("Prime\n");
            continue;
        }
        tol=0;
        findfac(n);//对n分解质因子
        ll ans=factor[0];
        for(int i=1; i<tol; i++)
            if(factor[i]<ans)
                ans=factor[i];
        /*for(int i=0;i<tol;i++)
        {
            printf("%lld\n",factor[i]);
        }*/
        printf("%lld\n",ans);
    }
    return 0;
}

复制代码

算法解析:

 由费马小定理可以知道,若p是素数且a是整数,则满足a^p==a(mod p)。若存在正整数a不满足a^p==a(mod p),那么p是合数。

定义:令a是一个正整数,若p是合数且满足a^p==a(mod p),则p称为以a为基的伪素数。

Miller-Rabin素数测试算法原理: 假如p是素数,且(a,p)==1,(a为任意小于p的正整数),那么a^p-1==1(mod p)。如果a^p-1==1(mod p),

则可认为n是素数,取多个底进行试验,次数越多,n为素数概率越大。(我的个人理解多次试验为p换基,使之成为伪素数的可能性大大减小)。

Miller-Rabin测试:不断选取不超过n-1的基b(s次),计算是否每次都有bn-1 ≡ 1(mod n),若每次都成立则n是素数,否则为合数。)

转载:说Miller-Rabin测试以前先说两个比较高效的求a*b% n 和 ab %n 的函数,这里都是用到二进制思想,将b拆分成二进制,然后与a相加(相乘)

复制代码

// a * b % n
//例如: b = 1011101那么a * b mod n = (a * 1000000 mod n + a * 10000 mod n + a * 1000 mod n + a * 100 mod n + a * 1 mod n) mod n 

ll mod_mul(ll a, ll b, ll n) {
    ll res = 0;
    while(b) {
        if(b&1)    res = (res + a) % n;
        a = (a + a) % n;//a=(a<<1)%n
        b >>= 1;
    }
    return res;
}

复制代码

这代码很棒,以后计算a*b时,如果里面有一个数很大,则可以选择上面的算法,(nlogn)的时间复杂度。

复制代码

//a^b % n
//同理
ll mod_exp(ll a, ll b, ll n) {
    ll res = 1;
    while(b) {
        if(b&1)    res = mod_mul(res, a, n);
        a = mod_mul(a, a, n);
        b >>= 1;
    }
    return res;
}

复制代码

快速幂,没什么好说的。

核心代码:

开始程序时需加srand(time(NULL));

复制代码

bool miller_rabin(ll n)
{
    for(int i=1; i<=N; i++) //N为你打算测试的次数,N(10~20)
    {
        ll a=random(n-2)+1;//需头文件stdlib.h,random(X)产生0~X的随机数,+1产生1~n-1
        if(mod_exp(a,n-1,mod)!=1)
        {
            "合数";
        }
    }
}

复制代码

 注意,MIller-Rabin测试是概率型的,不是确定型的,不过由于多次运行后出错的概率非常小,所以实际应用还是可行的。(一次Miller-Rabin测试其成功的概率为3/4)

二次探测定理:(改进)

一个合数n,若对所有满足(b,n)=1的正整数b都有b^n-1==1(mod n)成立,(上面的反例,但出现这种数的几率不大),则称之为卡迈克尔数。

 二次探测 如果p是奇素数,则 x2 ≡ 1(mod p)的解为 x = 1 || x = p - 1(mod p);

可以利用二次探测定理在实现Miller-Rabin上添加一些细节,具体实现如下:

复制代码

bool miller_rabin(ll n) {
    if(n == 2 || n == 3 || n == 5 || n == 7 || n == 11)    return true;
    if(n == 1 || !(n%2) || !(n%3) || !(n%5) || !(n%7) || !(n%11))    return false;

    ll x, pre, u;
    int i, j, k = 0;
    u = n - 1;    //要求x^u % n

    while(!(u&1)) {    //如果u为偶数则u右移,用k记录移位数
        k++; u >>= 1;
    }

    srand((ll)time(0));
    for(i = 0; i < S; ++i) {    //进行S次测试
        x = rand()%(n-2) + 2;    //在[2, n)中取随机数
        if((x%n) == 0)    continue;

        x = mod_exp(x, u, n);    //先计算(x^u) % n,
        pre = x;
        for(j = 0; j < k; ++j) {    //把移位减掉的量补上,并在这地方加上二次探测
            x = mod_mul(x, x, n);
            if(x == 1 && pre != 1 && pre != n-1)    return false;    //二次探测定理,这里如果x = 1则pre 必须等于 1,或则 n-1否则可以判断不是素数
            pre = x;
        }
        if(x != 1)    return false;    //费马小定理
    }
    return true;
}

复制代码

前边这个算法经过测试还是比较靠谱的,可以用作模板。

效率上,VC 10 RELEASE 模式下,采用三次循环 M - R,测试第 19999 个素数 224729 时,快除法快 而测试第 20000 个素数 224737 时,M - R 法快

因此,为保证最高效,测试大数 n 时,可以先对其使用前 19999 个素数进行快除法排除,而后再使用 M - R 测试。

AC_Von 原创,转载请注明出处:http://www.cnblogs.com/vongang/archive/2012/03/15/2398626.html

猜你喜欢

转载自blog.csdn.net/qq_40859951/article/details/81603817