AbstractQueuedSynchronizer(2)Condition的解析

AbstractQueuedSynchronizer(2)Condition的解析

我们常用 obj.wait(),obj.notify() 或 obj.notifyAll() 来实现相似的功能,但是,它们是基于对象的监视器锁的。
而这里说的 Condition 是基于 ReentrantLock 实现的,而 ReentrantLock 是依赖于 AbstractQueuedSynchronizer 实现的。调用 await 进入等待还是 signal 唤醒
下面是简单的例子。使用生产者-消费者的场景

public class ConditionTest {
    final Lock lock = new ReentrantLock();
    // condition 依赖于 lock 来产生
    final Condition notFull = lock.newCondition();
    final Condition notEmpty = lock.newCondition();

    final Object[] items = new Object[100];
    int putptr, takeptr, count;

    // 生产
    public void put(Object x) throws InterruptedException {
        lock.lock();
        try {
            while (count == items.length)
                notFull.await();  // 队列已满,等待,直到 not full 才能继续生产
            items[putptr] = x;
            if (++putptr == items.length) putptr = 0;
            ++count;
            notEmpty.signal(); // 生产成功,队列已经 not empty 了,发个通知出去
        } finally {
            lock.unlock();
        }
    }

    // 消费
    public Object take() throws InterruptedException {
        lock.lock();
        try {
            while (count == 0)
                notEmpty.await(); // 队列为空,等待,直到队列 not empty,才能继续消费
            Object x = items[takeptr];
            if (++takeptr == items.length) takeptr = 0;
            --count;
            notFull.signal(); // 被我消费掉一个,队列 not full 了,发个通知出去
            return x;
        } finally {
            lock.unlock();
        }
    }
}

上一篇介绍 AQS 的时候,我们有一个阻塞队列,用于保存等待获取锁的线程的队列。这里我们引入另一个概念,叫条件队列(condition queue),一张简单的图用来说明这个。
这里写图片描述
解释下这图,然后再具体地解释代码实现。

  1. 我们知道一个 ReentrantLock 实例可以通过多次调用 newCondition() 来产生多个 Condition实例,这里对应 condition1 和 condition2。
  2. 每个 condition 有一个关联的条件队列,如线程 1 调用 condition1.await() 方法即可将当前线程 1 包装成Node 后加入到条件队列中,然后阻塞在这里,不继续往下执行,条件队列是一个单向链表;
  3. 调用 condition1.signal() 会将condition1 对应的条件队列的 firstWaiter
    移到阻塞队列的队尾,等待获取锁,获取锁后 await 方法返回,继续往下执行。
    注意:
    1.这里说的 1、2、3 是最简单的流程,没有考虑中断、signalAll、还有带有超时参数的 await 方法等
    2.ConditionObject 只有两个属性 firstWaiter 和 lastWaiter;

2.1源码解读await

这里写图片描述

// 首先,这个方法是可被中断的,不可被中断的是另一个方法 awaitUninterruptibly()
// 这个方法会阻塞,直到调用 signal 方法(指 signal() 和 signalAll(),下同),或被中断
public final void await() throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    // 添加到 condition 的条件队列中
    Node node = addConditionWaiter();
    // 释放锁,返回值是释放锁之前的 state 值
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    // 这里退出循环有两种情况,之后再仔细分析
    // 1. isOnSyncQueue(node) 返回 true,即当前 node 已经转移到阻塞队列了
    // 2. checkInterruptWhileWaiting(node) != 0 会到 break,然后退出循环,代表的是线程中断
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    // 被唤醒后,将进入阻塞队列,等待获取锁
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null) // clean up if cancelled
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
}

1.将节点加入到条件队列
addConditionWaiter() 是将当前节点加入到条件队列,看图我们知道,这种条件队列内的操作是线程安全的。

// 将当前线程对应的节点入队,插入队尾
private Node addConditionWaiter() {
    Node t = lastWaiter;
    // 如果条件队列的最后一个节点取消了,将其清除出去
    if (t != null && t.waitStatus != Node.CONDITION) {
        // 这个方法会遍历整个条件队列,然后会将已取消的所有节点清除出队列
        unlinkCancelledWaiters();
        t = lastWaiter;
    }
    Node node = new Node(Thread.currentThread(), Node.CONDITION);
    // 如果队列为空
    if (t == null)
        firstWaiter = node;
    else
        t.nextWaiter = node;
    lastWaiter = node;
    return node;
}

在addWaiter 方法中,有一个 unlinkCancelledWaiters() 方法,该方法用于清除队列中已经取消等待的节点。
当 await 的时候如果发生了取消操作(这点之后会说),或者是在节点入队的时候,发现最后一个节点是被取消的,会调用一次这个方法。

// 等待队列是一个单向链表,遍历链表将已经取消等待的节点清除出去
// 纯属链表操作,很好理解,看不懂多看几遍就可以了
private void unlinkCancelledWaiters() {
    Node t = firstWaiter;
    Node trail = null;
    while (t != null) {
        Node next = t.nextWaiter;
        // 如果节点的状态不是 Node.CONDITION 的话,这个节点就是被取消的
        if (t.waitStatus != Node.CONDITION) {
            t.nextWaiter = null;
            if (trail == null)
                firstWaiter = next;
            else
                trail.nextWaiter = next;
            if (next == null)
                lastWaiter = trail;
        }
        else
            trail = t;
        t = next;
    }
}

2.完全释放独占锁
回到 wait 方法,节点入队了以后,会调用 int savedState = fullyRelease(node); 方法释放锁,注意,这里是完全释放独占锁,因为 ReentrantLock 是可以重入的。


// 首先,我们要先观察到返回值 savedState 代表 release 之前的 state 值
// 对于最简单的操作:先 lock.lock(),然后 condition1.await()。
//         那么 state 经过这个方法由 1 变为 0,锁释放,此方法返回 1
//         相应的,如果 lock 重入了 n 次,savedState == n
// 如果这个方法失败,会将节点设置为"取消"状态,并抛出异常 IllegalMonitorStateException
final int fullyRelease(Node node) {
    boolean failed = true;
    try {
        int savedState = getState();
        // 这里使用了当前的 state 作为 release 的参数,也就是完全释放掉锁,将 state 置为 0
        if (release(savedState)) {
            failed = false;
            return savedState;
        } else {
            throw new IllegalMonitorStateException();
        }
    } finally {
        if (failed)
            node.waitStatus = Node.CANCELLED;
    }
}

3.等待进入阻塞队列
释放掉锁以后,接下来是这段,这边会自旋,如果发现自己还没到阻塞队列,那么挂起,等待被转移到阻塞队列。

int interruptMode = 0;
while (!isOnSyncQueue(node)) {
    // 线程挂起
    LockSupport.park(this);

    if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
        break;
}

isOnSyncQueue(Node node) 用于判断节点是否已经转移到阻塞队列了:

// 在节点入条件队列的时候,初始化时设置了 waitStatus = Node.CONDITION
// 前面我提到,signal 的时候需要将节点从条件队列移到阻塞队列,
// 这个方法就是判断 node 是否已经移动到阻塞队列了
final boolean isOnSyncQueue(Node node) {
    // 移动过去的时候,node 的 waitStatus 会置为 0,这个之后在说 signal 方法的时候会说到
    // 如果 waitStatus 还是 Node.CONDITION,也就是 -2,那肯定就是还在条件队列中
    // 如果 node 的前驱 prev 指向还是 null,说明肯定没有在 阻塞队列
    if (node.waitStatus == Node.CONDITION || node.prev == null)
        return false;
    // 如果 node 已经有后继节点 next 的时候,那肯定是在阻塞队列了
    if (node.next != null) 
        return true;
    // 这个方法从阻塞队列的队尾开始从后往前遍历找,如果找到相等的,说明在阻塞队列,否则就是不在阻塞队列
    // 可以通过判断 node.prev() != null 来推断出 node 在阻塞队列吗?答案是:不能。
    // 这个可以看上篇 AQS 的入队方法,首先设置的是 node.prev 指向 tail,
    // 然后是 CAS 操作将自己设置为新的 tail,可是这次的 CAS 是可能失败的。
    // 调用这个方法的时候,往往我们需要的就在队尾的部分,所以一般都不需要完全遍历整个队列的
    return findNodeFromTail(node);
}

// 从同步队列的队尾往前遍历,如果找到,返回 true
private boolean findNodeFromTail(Node node) {
    Node t = tail;
    for (;;) {
        if (t == node)
            return true;
        if (t == null)
            return false;
        t = t.prev;
    }
}

2.2源码解读signal

// 唤醒等待了最久的线程
// 其实就是,将这个线程对应的 node 从条件队列转移到阻塞队列
public final void signal() {
    // 调用 signal 方法的线程必须持有当前的独占锁
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    Node first = firstWaiter;
    if (first != null)
        doSignal(first);
}

// 从条件队列队头往后遍历,找出第一个需要转移的 node
// 因为前面我们说过,有些线程会取消排队,但是还在队列中
private void doSignal(Node first) {
    do {
          // 将 firstWaiter 指向 first 节点后面的第一个
        // 如果将队头移除后,后面没有节点在等待了,那么需要将 lastWaiter 置为 null
        if ( (firstWaiter = first.nextWaiter) == null)
            lastWaiter = null;
        // 因为 first 马上要被移到阻塞队列了,和条件队列的链接关系在这里断掉
        first.nextWaiter = null;
    } while (!transferForSignal(first) &&
             (first = firstWaiter) != null);
      // 这里 while 循环,如果 first 转移不成功,那么选择 first 后面的第一个节点进行转移,依此类推
}

// 将节点从条件队列转移到阻塞队列
// true 代表成功转移
// false 代表在 signal 之前,节点已经取消了
final boolean transferForSignal(Node node) {

    // CAS 如果失败,说明此 node 的 waitStatus 已不是 Node.CONDITION,说明节点已经取消,
    // 既然已经取消,也就不需要转移了,方法返回,转移后面一个节点
    // 否则,将 waitStatus 置为 0
    if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
        return false;

    // enq(node): 自旋进入阻塞队列的队尾
    // 注意,这里的返回值 p 是 node 在阻塞队列的前驱节点
    Node p = enq(node);
    int ws = p.waitStatus;
    // ws > 0 说明 node 在阻塞队列中的前驱节点取消了等待锁,直接唤醒 node 对应的线程。唤醒之后会怎么样,后面再解释
    // 如果 ws <= 0, 那么 compareAndSetWaitStatus 将会被调用,上篇介绍的时候说过,节点入队后,需要把前驱节点的状态设为 Node.SIGNAL(-1)
    if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
        // 如果前驱节点取消或者 CAS 失败,会进到这里唤醒线程,之后的操作看下一节
        LockSupport.unpark(node.thread);
    return true;
}

等线程从挂起中恢复过来,继续往下看

int interruptMode = 0;
while (!isOnSyncQueue(node)) {
    // 线程挂起
    LockSupport.park(this);

    if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
        break;
}

先解释下 interruptMode。interruptMode 可以取值为 REINTERRUPT(1),THROW_IE(-1),0

  • REINTERRUPT: 代表 await 返回的时候,需要重新设置中断状态
  • THROW_IE: 代表 await 返回的时候,需要抛出 InterruptedException 异常
  • 0 :说明在 await期间,没有发生中断

有以下三种情况会让 LockSupport.park(this); 这句返回继续往下执行

  1. 常规路劲。signal -> 转移节点到阻塞队列 -> 获取了锁(unpark)
  2. 线程中断。在 park 的时候,另外一个线程对这个线程进行了中断
  3. signal 的时候我们说过,转移以后的前驱节点取消了,或者对前驱节点的CAS操作失败了
  4. 假唤醒。这个也是存在的,和 Object.wait() 类似,都有这个问题

线程唤醒后第一步是调用 checkInterruptWhileWaiting(node) 这个方法,此方法用于判断是否在线程挂起期间发生了中断,如果发生了中断,是 signal 调用之前中断的,还是 signal 之后发生的中断。

// 1. 如果在 signal 之前已经中断,返回 THROW_IE
// 2. 如果是 signal 之后中断,返回 REINTERRUPT
// 3. 没有发生中断,返回 0
private int checkInterruptWhileWaiting(Node node) {
    return Thread.interrupted() ?
        (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
        0;
}

Thread.interrupted():如果当前线程已经处于中断状态,那么该方法返回 true,同时将中断状态重置为 false,所以,才有后续的 重新中断(REINTERRUPT) 的使用。
看看怎么判断是 signal 之前还是之后发生的中断:

// 只有线程处于中断状态,才会调用此方法
// 如果需要的话,将这个已经取消等待的节点转移到阻塞队列
// 返回 true:如果此线程在 signal 之前被取消,
final boolean transferAfterCancelledWait(Node node) {
    // 用 CAS 将节点状态设置为 0 
    // 如果这步 CAS 成功,说明是 signal 方法之前发生的中断,因为如果 signal 先发生的话,signal 中会将 waitStatus 设置为 0
    if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
        // 将节点放入阻塞队列
        // 这里我们看到,即使中断了,依然会转移到阻塞队列
        enq(node);
        return true;
    }

    // 到这里是因为 CAS 失败,肯定是因为 signal 方法已经将 waitStatus 设置为了 0
    // signal 方法会将节点转移到阻塞队列,但是可能还没完成,这边自旋等待其完成
    // 当然,这种事情还是比较少的吧:signal 调用之后,没完成转移之前,发生了中断
    while (!isOnSyncQueue(node))
        Thread.yield();
    return false;
}

这里再说一遍,即使发生了中断,节点依然会转移到阻塞队列。
到这里,大家应该都知道这个 while 循环怎么退出了吧。要么中断,要么转移成功。

猜你喜欢

转载自blog.csdn.net/c_royi/article/details/81214656
今日推荐