深度学习之 cifar-10

前言:window10+cuda9.0+cudnn+pycharm+py3.5+tensorflow1.9
这是本文的开发环境
参考视频:kevinrush

一、数据部分:
cifar-10下载地址:

http://www.cs.toronto.edu/~kriz/cifar.html

训练集50000张图,测试集10000张,大小均为32*32,共有10类,分别为飞机,鸟,猫,狗等。
该数据集有三种形式,python,matlab,二进制形式,区别如下:
二进制形式可以单张图片读取,读取方式如本文下面介绍;python和matlab图片不能单张读取!!只能一次性放入内存,读取方式官网有提到,集cpickle,代码如下:

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

本文下载的是二进制形式数据集,每张图片占3073个字节,训练集中每个图的第一个字节是图片的类别。解压后五个训练文件,一个test文件,一个多伦多大学官网网址,一个是标签。

二、代码部分:
1.cifar10_input.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import tensorflow.python.platform
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

from tensorflow.python.platform import gfile

# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
IMAGE_SIZE = 24

# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000


def read_cifar10(filename_queue):
    """Reads and parses examples from CIFAR10 data files.
    Recommendation: if you want N-way read parallelism, call this function
    N times.  This will give you N independent Readers reading different
    files & positions within those files, which will give better mixing of
    examples.
    Args:
      filename_queue: A queue of strings with the filenames to read from.
    Returns:
      An object representing a single example, with the following fields:
        height: number of rows in the result (32)
        width: number of columns in the result (32)
        depth: number of color channels in the result (3)
        key: a scalar string Tensor describing the filename & record number
          for this example.
        label: an int32 Tensor with the label in the range 0..9.
        uint8image: a [height, width, depth] uint8 Tensor with the image data
    """

    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                             [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result


def _generate_image_and_label_batch(image, label, min_queue_examples,
                                    batch_size):
    """Construct a queued batch of images and labels.
    Args:
      image: 3-D Tensor of [height, width, 3] of type.float32.
      label: 1-D Tensor of type.int32
      min_queue_examples: int32, minimum number of samples to retain
        in the queue that provides of batches of examples.
      batch_size: Number of images per batch.
    Returns:
      images: Images. 4D tensor of [batch_size, height, width, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    # Create a queue that shuffles the examples, and then
    # read 'batch_size' images + labels from the example queue.
    num_preprocess_threads = 16
    images, label_batch = tf.train.shuffle_batch(
        [image, label],
        batch_size=batch_size,
        num_threads=num_preprocess_threads,
        capacity=min_queue_examples + 3 * batch_size,
        min_after_dequeue=min_queue_examples)

    # Display the training images in the visualizer.
    tf.summary.image('images', images)

    return images, tf.reshape(label_batch, [batch_size])


def distorted_inputs(data_dir, batch_size):
    """Construct distorted input for CIFAR training using the Reader ops.
    Args:
      data_dir: Path to the CIFAR-10 data directory.
      batch_size: Number of images per batch.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                 for i in xrange(1, 6)]
    for f in filenames:
        if not gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # randomize the order their operation.
    distorted_image = tf.image.random_brightness(distorted_image,
                                                 max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2, upper=1.8)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(distorted_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                             min_fraction_of_examples_in_queue)
    print('Filling queue with %d CIFAR images before starting to train. '
          'This will take a few minutes.' % min_queue_examples)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size)


def inputs(eval_data, data_dir, batch_size):
    """Construct input for CIFAR evaluation using the Reader ops.
    Args:
      eval_data: bool, indicating if one should use the train or eval data set.
      data_dir: Path to the CIFAR-10 data directory.
      batch_size: Number of images per batch.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    if not eval_data:
        filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                     for i in xrange(1, 6)]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
    else:
        filenames = [os.path.join(data_dir, 'test_batch.bin')]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

    for f in filenames:
        if not gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           width, height)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_whitening(resized_image)

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(num_examples_per_epoch *
                             min_fraction_of_examples_in_queue)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size)

2.cifar

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import gzip
import os
import re
import sys
import tarfile

import tensorflow.python.platform
from six.moves import urllib
import tensorflow as tf

import cifar10_input

FLAGS = tf.app.flags.FLAGS

# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', 'data/',
                           """Path to the CIFAR-10 data directory.""")

# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999  # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0  # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1  # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1  # Initial learning rate.

# If a model is trained with multiple GPU's prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'

DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'


def _activation_summary(x):
    """Helper to create summaries for activations.
    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.
    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.summary.histogram(tensor_name + '/activations', x)
    tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))


def _variable_on_cpu(name, shape, initializer):
    """Helper to create a Variable stored on CPU memory.
    Args:
      name: name of the variable
      shape: list of ints
      initializer: initializer for Variable
    Returns:
      Variable Tensor
    """
    with tf.device('/cpu:0'):
        var = tf.get_variable(name, shape, initializer=initializer)
    return var


def _variable_with_weight_decay(name, shape, stddev, wd):
    """Helper to create an initialized Variable with weight decay.
    Note that the Variable is initialized with a truncated normal distribution.
    A weight decay is added only if one is specified.
    Args:
      name: name of the variable
      shape: list of ints
      stddev: standard deviation of a truncated Gaussian
      wd: add L2Loss weight decay multiplied by this float. If None, weight
          decay is not added for this Variable.
    Returns:
      Variable Tensor
    """
    var = _variable_on_cpu(name, shape,
                           tf.truncated_normal_initializer(stddev=stddev))
    if wd:
        weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
        tf.add_to_collection('losses', weight_decay)
    return var


def distorted_inputs():
    """Construct distorted input for CIFAR training using the Reader ops.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    Raises:
      ValueError: If no data_dir
    """
    if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')
    data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
    return cifar10_input.distorted_inputs(data_dir=data_dir,
                                          batch_size=FLAGS.batch_size)


def inputs(eval_data):
    """Construct input for CIFAR evaluation using the Reader ops.
    Args:
      eval_data: bool, indicating if one should use the train or eval data set.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    Raises:
      ValueError: If no data_dir
    """
    if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')
    data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
    return cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir,
                                batch_size=FLAGS.batch_size)


def inference(images):
    """Build the CIFAR-10 model.
    Args:
      images: Images returned from distorted_inputs() or inputs().
    Returns:
      Logits.
    """
    # We instantiate all variables using tf.get_variable() instead of
    # tf.Variable() in order to share variables across multiple GPU training runs.
    # If we only ran this model on a single GPU, we could simplify this function
    # by replacing all instances of tf.get_variable() with tf.Variable().
    #
    # conv1
    with tf.variable_scope('conv1') as scope:
        kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64],
                                             stddev=1e-4, wd=0.0)
        conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
        biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
        bias = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(bias, name=scope.name)
        _activation_summary(conv1)

    # pool1
    pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                           padding='SAME', name='pool1')
    # norm1
    norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                      name='norm1')

    # conv2
    with tf.variable_scope('conv2') as scope:
        kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64],
                                             stddev=1e-4, wd=0.0)
        conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
        biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope.name)
        _activation_summary(conv2)

    # norm2
    norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                      name='norm2')
    # pool2
    pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                           strides=[1, 2, 2, 1], padding='SAME', name='pool2')

    # local3
    with tf.variable_scope('local3') as scope:
        # Move everything into depth so we can perform a single matrix multiply.
        dim = 1
        for d in pool2.get_shape()[1:].as_list():
            dim *= d
        reshape = tf.reshape(pool2, [FLAGS.batch_size, dim])

        weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                              stddev=0.04, wd=0.004)
        biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
        local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
        _activation_summary(local3)

    # local4
    with tf.variable_scope('local4') as scope:
        weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                              stddev=0.04, wd=0.004)
        biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
        _activation_summary(local4)

    # softmax, i.e. softmax(WX + b)
    with tf.variable_scope('softmax_linear') as scope:
        weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                              stddev=1 / 192.0, wd=0.0)
        biases = _variable_on_cpu('biases', [NUM_CLASSES],
                                  tf.constant_initializer(0.0))
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
        _activation_summary(softmax_linear)

    return softmax_linear


def loss(logits, labels):
    """Add L2Loss to all the trainable variables.
    Add summary for for "Loss" and "Loss/avg".
    Args:
      logits: Logits from inference().
      labels: Labels from distorted_inputs or inputs(). 1-D tensor
              of shape [batch_size]
    Returns:
      Loss tensor of type float.
    """
    # Reshape the labels into a dense Tensor of
    # shape [batch_size, NUM_CLASSES].
    sparse_labels = tf.reshape(labels, [FLAGS.batch_size, 1])
    indices = tf.reshape(tf.range(FLAGS.batch_size), [FLAGS.batch_size, 1])
    concated = tf.concat([indices, sparse_labels], 1)
    dense_labels = tf.sparse_to_dense(concated,
                                      [FLAGS.batch_size, NUM_CLASSES],
                                      1.0, 0.0)

    # Calculate the average cross entropy loss across the batch.
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=dense_labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


def _add_loss_summaries(total_loss):
    """Add summaries for losses in CIFAR-10 model.
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.
    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.summary.scalar(l.op.name + ' (raw)', l)
        tf.summary.scalar(l.op.name, loss_averages.average(l))

    return loss_averages_op


def train(total_loss, global_step):
    """Train CIFAR-10 model.
    Create an optimizer and apply to all trainable variables. Add moving
    average for all trainable variables.
    Args:
      total_loss: Total loss from loss().
      global_step: Integer Variable counting the number of training steps
        processed.
    Returns:
      train_op: op for training.
    """
    # Variables that affect learning rate.
    num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
    decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)
    tf.summary.scalar('learning_rate', lr)

    # Generate moving averages of all losses and associated summaries.
    loss_averages_op = _add_loss_summaries(total_loss)

    # Compute gradients.
    with tf.control_dependencies([loss_averages_op]):
        opt = tf.train.GradientDescentOptimizer(lr)
        grads = opt.compute_gradients(total_loss)

    # Apply gradients.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        tf.summary.histogram(var.op.name, var)

    # Add histograms for gradients.
    for grad, var in grads:
        if grad is not None:
            tf.summary.histogram(var.op.name + '/gradients', grad)

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
        train_op = tf.no_op(name='train')

    return train_op


def maybe_download_and_extract():
    """Download and extract the tarball from Alex's website."""
    dest_directory = FLAGS.data_dir
    if not os.path.exists(dest_directory):
        os.makedirs(dest_directory)
    filename = DATA_URL.split('/')[-1]
    filepath = os.path.join(dest_directory, filename)
    if not os.path.exists(filepath):
        def _progress(count, block_size, total_size):
            sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
                                                             float(count * block_size) / float(total_size) * 100.0))
            sys.stdout.flush()

        filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath,
                                                 reporthook=_progress)
        print()
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
        tarfile.open(filepath, 'r:gz').extractall(dest_directory)

3.cifar10_train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import os.path
import time

import tensorflow.python.platform
from tensorflow.python.platform import gfile

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

import cifar10

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('train_dir', 'data/train',
                           """Directory where to write event logs """
                           """and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 1000000,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")


def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for CIFAR-10.
        # 输入图像的预处理,包括亮度、对比度、图像翻转等操作
        images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.summary.FileWriter(FLAGS.train_dir,
                                               graph_def=sess.graph_def)
        # 按照设置的迭代次数迭代
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            # 每10个输入数据显示次step,loss,时间等运行数据
            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                              'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))
            # 每100个输入数据将网络的状况体现在summary里
            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            # 每1000个输入数据保存次模型
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)


def main(argv=None):  # pylint: disable=unused-argument
    # 检查目录下是否有数据,没有则下载。
    cifar10.maybe_download_and_extract()
    # 删除训练日志。
    if gfile.Exists(FLAGS.train_dir):
        gfile.DeleteRecursively(FLAGS.train_dir)
    gfile.MakeDirs(FLAGS.train_dir)
    # 训练
    train()

猜你喜欢

转载自blog.csdn.net/qq_32644121/article/details/81585415
今日推荐