GBDT+LR

GBDT和LR的融合在广告点击率预估中算是发展比较早的算法,原理是通过GBDT组合的特征作为LR的输入
特征组合的介绍见上一篇博客:https://blog.csdn.net/qq_26598445/article/details/80998760

1、背景

目前工业界中用的较多的是LR,LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间,最后输出是一个概率值,LR这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的特征、特征组合,从而去间接增强LR的非线性学习能力。

因此LR中的特征工程很重要,但又无指导性方法,只能依靠个人的专家经验,耗时耗力同时并不一定会带来效果提升。如何自动发现有效的特征、特征组合,弥补人工经验不足,缩短LR特征实验周期,是亟需解决的问题。Facebook 2014年的文章介绍了通过GBDT(Gradient Boost Decision Tree)解决LR的特征组合问题[3],随后Kaggle竞赛也有实践此思路,GBDT与LR融合开始引起了业界关注。

GBDT(Gradient Boost Decision Tree)是一种常用的非线性模型,它基于集成学习中的boosting思想,每次迭代都在减少残差的梯度方向新建立一颗决策树,迭代多少次就会生成多少颗决策树。GBDT的思想使其具有天然优势可以发现多种有区分性的特征以及特征组合,决策树的路径可以直接作为LR输入特征使用,省去了人工寻找特征、特征组合的步骤。这种通过GBDT生成LR特征的方式(GBDT+LR),业界已有实践(Facebook,Kaggle-2014),且效果不错,是非常值得尝试的思路。GBDT+LR能寻找出有区分性特征(raw feature)、特征组合(cross feature),融合后直接通过黑盒子(Tree模型GBDT)进行特征、特种组合的自动发现。

在介绍这个模型之前,我们先来介绍两个问题:
1)为什么要使用集成的决策树模型,而不是单棵的决策树模型:一棵树的表达能力很弱,不足以表达多个有区分性的特征组合,多棵树的表达能力更强一些。可以更好的发现有效的特征和特征组合
2)为什么建树采用GBDT而非RF:RF也是多棵树,但从效果上有实践证明不如GBDT。且GBDT前面的树,特征分裂主要体现对多数样本有区分度的特征;后面的树,主要体现的是经过前N颗树,残差仍然较大的少数样本。优先选用在整体上有区分度的特征,再选用针对少数样本有区分度的特征,思路更加合理,这应该也是用GBDT的原因。

2、GBDT+LR融合方法

GBDT与LR的融合方式如下图,图中Tree1、Tree2为通过GBDT模型学出来的两颗树,x为一条输入样本,遍历两棵树后,x样本分别落到两颗树的叶子节点上,每个叶子节点对应LR一维特征,那么通过遍历树,就得到了该样本对应的所有LR特征。由于树的每条路径,是通过最小化均方差等方法最终分割出来的有区分性路径,根据该路径得到的特征、特征组合都相对有区分性,效果理论上不会亚于人工经验的处理方式。构造的新特征向量是取值0/1的。举例来说:下图有两棵树,左树有三个叶子节点,右树有两个叶子节点,最终的特征即为五维的向量。对于输入x,假设他落在左树第一个节点,编码[1,0,0],落在右树第二个节点则编码[0,1],所以整体的编码为[1,0,0,0,1],这类编码作为特征,输入到LR中进行分类。

作者:石晓文的学习日记
链接:https://www.jianshu.com/p/96173f2c2fb4
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
这里写图片描述

猜你喜欢

转载自blog.csdn.net/qq_26598445/article/details/80998872
今日推荐