opencv3 目标运动检测

基本的运动检测

一种最直观的方法就是计算帧之间的差异,或考虑“背景”帧与其他帧之间的差异

basic_motion_detection.py

import cv2
import numpy as np

camera = cv2.VideoCapture(0)

es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10,10))#返回指定形状和尺寸的结构元素
kernel = np.ones((5,5),np.uint8)
background = None

while (True):
    ret, frame = camera.read()
    if background is None:
        background = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        background = cv2.GaussianBlur(background, (21, 21), 0)
        continue
    
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray_frame = cv2.GaussianBlur(gray_frame, (21, 21), 0)
    
    diff = cv2.absdiff(background, gray_frame)#得到一个差分图
    diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]#固定阈值处理黑白图
    diff = cv2.dilate(diff, es, iterations = 2)#膨胀处理图像
    
    image, cnts, hierarchy = cv2.findContours(diff.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    for c in cnts:
        if cv2.contourArea(c) < 1500:
            continue
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)
    
    cv2.imshow("contours", frame)
    cv2.imshow("dif", diff)
    if cv2.waitKey(int(1000 / 12)) & 0xff == ord("q"):
        break
    
cv2.waitKey(0)
cv2.destroyAllWindows()
camera.release()

       存在的问题:这个方法需要提前设置“默认”帧作为背景,在一些光照变化频繁的情况下,这种方法就不灵活。所以后面引入背景分割器


背景分割器:KNN、MOG2和GMG

    BackgroundSubtractor类是专门用于视频分析的,即BackgroundSubtractor类会对每帧的环境进行‘学习’,他的另一个特征是它可以计算阴影。通过检测阴影,可排除检测图像的阴影区域(采用阈值方式),从而关注实际特征。

mog

import cv2
import numpy as np

bs = cv2.createBackgroundSubtractorKNN(detectShadows = True)
camera = cv2.VideoCapture("movie.mpg")


while True:
    ret, frame = camera.read()
    fgmask = bs.apply(frame)
    th = cv2.threshold(fgmask.copy(), 244, 255, cv2.THRESH_BINARY)[1]
    th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations = 2)
    dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,3)), iterations = 2)
    
    image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for c in contours:
        if cv2.contourArea(c) > 1000:
            (x,y,w,h) = cv2.boundingRect(c)
            cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)
    
    cv2.imshow("mog", fgmask)
    cv2.imshow("thresh", th)
    cv2.imshow("diff", frame & cv2.cvtColor(fgmask, cv2.COLOR_GRAY2BGR))
    cv2.imshow("detection", frame)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break

camera.release()
cv2.destroyAllWindows()

BackgroundSubtractorKNN来实现运动检测的例子

import cv2
import numpy as np

knn = cv2.createBackgroundSubtractorKNN(detectShadows = True)
es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (20,12))
camera = cv2.VideoCapture("traffic.flv")

def drawCnt(fn, cnt):
    if cv2.contourArea(cnt) > 1400:
        (x, y, w, h) = cv2.boundingRect(cnt)
        cv2.rectangle(fn, (x, y), (x + w, y + h), (255, 255, 0), 2)

while True:
    ret, frame = camera.read()
    if not ret:
        break
    fg = knn.apply(frame.copy()) #计算了前景掩码
    fg_bgr = cv2.cvtColor(fg, cv2.COLOR_GRAY2BGR)
    bw_and = cv2.bitwise_and(fg_bgr, frame)
    draw = cv2.cvtColor(bw_and, cv2.COLOR_BGR2GRAY)
    draw = cv2.GaussianBlur(draw, (21, 21), 0)
    draw = cv2.threshold(draw, 20, 255, cv2.THRESH_BINARY)[1]
    draw = cv2.dilate(draw, es, iterations = 2)
    image, contours, hierarchy = cv2.findContours(draw.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for c in contours:
        drawCnt(frame, c)
    cv2.imshow("motion detection", frame)
    if cv2.waitKey(int(1000 / 12)) & 0xff == ord("q"):
        break

camera.release()
cv2.destroyAllWindows()

均值漂移

均值漂移是一种目标跟踪算法,该算法寻找概率函数离散样本的最大密度(例如感兴趣的图像区域),并且重新计算在下一帧种的最大密度,该算法给出了目标的移动。

meanshit.py

import numpy as np
import cv2

cap = cv2.VideoCapture(0)
# capture the first frame
ret,frame = cap.read()
# mark the ROI
r,h,c,w = 10, 200, 10, 200
# wrap in a tuple
track_window = (c,r,w,h)

# extract the ROI for tracking
roi = frame[r:r+h, c:c+w]
# switch to HSV
hsv_roi =  cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# create a mask with upper and lower boundaries of colors you want to track
mask = cv2.inRange(hsv_roi, np.array((100., 30.,32.)), np.array((180.,120.,255.)))
# calculate histograms of roi
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)

# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

while(1):
    ret ,frame = cap.read()

    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        #print (dst)
        # apply meanshift to get the new location
        ret, track_window = cv2.meanShift(dst, track_window, term_crit)

        # Draw it on image
        x,y,w,h = track_window
        img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
        cv2.imshow('img2',img2)

        k = cv2.waitKey(60) & 0xff
        if k == 27:
            break

    else:
        break

cv2.destroyAllWindows()
cap.release()

如果在计算机上运行这些代码,会观察到均值漂移窗口是怎么搜索指定颜色范围的;如果没有找到,就只能看到串口抖动。如果有指定颜色范围的目标进入窗口,该窗口就会开始跟踪这个目标

CAMShit

在调用CAMShit以后,会根据具体的旋转来绘制矩阵,这种旋转会与被跟踪对象一起旋转;其中boxPoint函数会找到被旋转的顶点,而折现函数会在帧上绘制矩形线段

import numpy as np
import cv2

cap = cv2.VideoCapture(0)

# take first frame of the video
ret,frame = cap.read()

# setup initial location of window
r,h,c,w = 300,200,400,300  # simply hardcoded the values
track_window = (c,r,w,h)


roi = frame[r:r+h, c:c+w]
hsv_roi =  cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((100., 30.,32.)), np.array((180.,120.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

while(1):
    ret ,frame = cap.read()

    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)

        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv2.polylines(frame,[pts],True, 255,2)

        cv2.imshow('img2',img2)
        k = cv2.waitKey(60) & 0xff
        if k == 27:
            break

    else:
        break

cv2.destroyAllWindows()
cap.release()

卡尔曼滤波器

主要包含预测和更新

预测:卡尔曼滤波器使用当前点计算的协方差来估计目标的新位置

更新:卡尔曼滤波器记录目标的位置,并为下一次循环计算修正协方差

Kalman.py

import cv2, numpy as np

measurements = []
predictions = []
frame = np.zeros((800, 800, 3), np.uint8)
last_measurement = current_measurement = np.array((2,1), np.float32) 
last_prediction = current_prediction = np.zeros((2,1), np.float32)

def mousemove(event, x, y, s, p):
    global frame, current_measurement, measurements, last_measurement, current_prediction, last_prediction
    last_prediction = current_prediction
    last_measurement = current_measurement
    current_measurement = np.array([[np.float32(x)],[np.float32(y)]])
    kalman.correct(current_measurement)
    current_prediction = kalman.predict()
    lmx, lmy = last_measurement[0], last_measurement[1]
    cmx, cmy = current_measurement[0], current_measurement[1]
    lpx, lpy = last_prediction[0], last_prediction[1]
    cpx, cpy = current_prediction[0], current_prediction[1]
    cv2.line(frame, (lmx, lmy), (cmx, cmy), (0,100,0))
    cv2.line(frame, (lpx, lpy), (cpx, cpy), (0,0,200))


cv2.namedWindow("kalman_tracker")
cv2.setMouseCallback("kalman_tracker", mousemove);

kalman = cv2.KalmanFilter(4,2,1)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03

while True:
    cv2.imshow("kalman_tracker", frame)
    if (cv2.waitKey(30) & 0xFF) == 27:
        break
    if (cv2.waitKey(30) & 0xFF) == ord('q'):
        cv2.imwrite('kalman.jpg', frame)
        break

cv2.destroyAllWindows()

输出:



一个基于行人跟踪的例子

#! /usr/bin/python

"""Surveillance Demo: Tracking Pedestrians in Camera Feed

The application opens a video (could be a camera or a video file)
and tracks pedestrians in the video.
"""
# __author__ = "joe minichino"
# __copyright__ = "property of mankind."
# __license__ = "MIT"
# __version__ = "0.0.1"
# __maintainer__ = "Joe Minichino"
# __email__ = "[email protected]"
# __status__ = "Development"

import cv2
import numpy as np
import os.path as path
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("-a", "--algorithm",
    help = "m (or nothing) for meanShift and c for camshift")
args = vars(parser.parse_args())

def center(points):
    """calculates centroid of a given matrix"""
    x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4
    y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4
    return np.array([np.float32(x), np.float32(y)], np.float32)

font = cv2.FONT_HERSHEY_SIMPLEX

class Pedestrian():
  """Pedestrian class

  each pedestrian is composed of a ROI, an ID and a Kalman filter
  so we create a Pedestrian class to hold the object state
  """
  def __init__(self, id, frame, track_window):
    """init the pedestrian object with track window coordinates"""
    # set up the roi
    self.id = int(id)
    x,y,w,h = track_window
    self.track_window = track_window
    self.roi = cv2.cvtColor(frame[y:y+h, x:x+w], cv2.COLOR_BGR2HSV)
    roi_hist = cv2.calcHist([self.roi], [0], None, [16], [0, 180])
    self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

    # set up the kalman
    self.kalman = cv2.KalmanFilter(4,2)
    self.kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
    self.kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
    self.kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03
    self.measurement = np.array((2,1), np.float32) 
    self.prediction = np.zeros((2,1), np.float32)
    self.term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
    self.center = None
    self.update(frame)
    
  def __del__(self):
    print ("Pedestrian %d destroyed" % self.id)

  def update(self, frame):
    # print "updating %d " % self.id
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    back_project = cv2.calcBackProject([hsv],[0], self.roi_hist,[0,180],1)
    
    if args.get("algorithm") == "c":
      ret, self.track_window = cv2.CamShift(back_project, self.track_window, self.term_crit)
      pts = cv2.boxPoints(ret)
      pts = np.int0(pts)
      self.center = center(pts)
      cv2.polylines(frame,[pts],True, 255,1)
      
    if not args.get("algorithm") or args.get("algorithm") == "m":
      ret, self.track_window = cv2.meanShift(back_project, self.track_window, self.term_crit)
      x,y,w,h = self.track_window
      self.center = center([[x,y],[x+w, y],[x,y+h],[x+w, y+h]])  
      cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)

    self.kalman.correct(self.center)
    prediction = self.kalman.predict()
    cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (255, 0, 0), -1)
    # fake shadow
    cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (11, (self.id + 1) * 25 + 1),
        font, 0.6,
        (0, 0, 0),
        1,
        cv2.LINE_AA)
    # actual info
    cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (10, (self.id + 1) * 25),
        font, 0.6,
        (0, 255, 0),
        1,
        cv2.LINE_AA)

def main():
  # camera = cv2.VideoCapture(path.join(path.dirname(__file__), "traffic.flv"))
  camera = cv2.VideoCapture("768x576.avi")
  # camera = cv2.VideoCapture(path.join(path.dirname(__file__), "..", "movie.mpg"))
  # camera = cv2.VideoCapture(0)
  history = 20
  # KNN background subtractor
  bs = cv2.createBackgroundSubtractorKNN()

  # MOG subtractor
  # bs = cv2.bgsegm.createBackgroundSubtractorMOG(history = history)
  # bs.setHistory(history)

  # GMG
  # bs = cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames = history)
  
  cv2.namedWindow("surveillance")
  pedestrians = {}
  firstFrame = True
  frames = 0
  fourcc = cv2.VideoWriter_fourcc(*'XVID')
  out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
  while True:
    print (" -------------------- FRAME %d --------------------" % frames)
    grabbed, frame = camera.read()
    if (grabbed is False):
      print ("failed to grab frame.")
      break

    fgmask = bs.apply(frame)

    # this is just to let the background subtractor build a bit of history
    if frames < history:
      frames += 1
      continue


    th = cv2.threshold(fgmask.copy(), 127, 255, cv2.THRESH_BINARY)[1]
    th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations = 2)
    dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,3)), iterations = 2)
    image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    counter = 0
    for c in contours:
      if cv2.contourArea(c) > 500:
        (x,y,w,h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0), 1)
        # only create pedestrians in the first frame, then just follow the ones you have
        if firstFrame is True:
          pedestrians[counter] = Pedestrian(counter, frame, (x,y,w,h))
        counter += 1
    

    for i, p in pedestrians.items():
      p.update(frame)
    
    firstFrame = False
    frames += 1

    cv2.imshow("surveillance", frame)
    out.write(frame)
    if cv2.waitKey(110) & 0xff == 27:
        break
  out.release()
  camera.release()

if __name__ == "__main__":
  main()

输出:蓝色矩形框为CAMShit检测的结果,绿色矩形框是卡尔曼滤波器预测的结果,其中心为蓝色圆圈



猜你喜欢

转载自blog.csdn.net/zhuisaozhang1292/article/details/80918396