tensorflow入门,完成1元1次方程拟合

tensorflow入门,完成1元1次方程拟合
该一元一次方程为:
x_data = np.float32(np.random.rand( 2 , 100 )) # 随机输入
y_data = np.dot([ 0.100 , 0.200 ], x_data) + 0.300
由于是x_data是随机数,故而无法画出图形,若我们定义x为等差数列[[ 0 , 1 , 2 ,.. .100 ],[ 101. . .200 ]]

则y = ax + b为分段方程;x在[ 1 , 100 ] 时,y = 0.10 0x + 0.3 ;x在[ 101 , 200 ]时,y = 0.20 0x + 0.3
我们今天要做的,就是使用tensorflow来求解系数0. 100 和0. 200 以及偏置0. 3

以下是代码和详细描述:


import tensorflow as tf
import numpy as np
x_data = np.float32(np.random.rand( 2 , 100 ))
y_data = np.dot([ 0.100 , 0.200 ],x_data) + 0.300

# In [18]: y_data
# Out[18]:
# array([0.3775784 , 0.44246963, 0.54814347, 0.47920347, 0.44502148,
#        0.47671588, 0.52602917, 0.42399144, 0.55421975, 0.56123726,
#        0.43116061, 0.58739868, 0.56753602, 0.33052424, 0.51231386,
#        0.35698801, 0.41138735, 0.43066818, 0.45888491, 0.51811442,
#        0.37335225, 0.35873668, 0.49872529, 0.51496372, 0.4708255 ,
#        0.33057731, 0.49321586, 0.52910891, 0.48146467, 0.4564127 ,
#        0.49315754, 0.47433195, 0.41521251, 0.47231215, 0.36476854,
#        0.56163432, 0.48083746, 0.36155672, 0.45484892, 0.47454886,
#        0.35468251, 0.58545158, 0.52509505, 0.51380747, 0.40301575,
#        0.49873314, 0.41870016, 0.51702609, 0.38683276, 0.34510854,
#        0.43597745, 0.33068472, 0.45829301, 0.53734922, 0.37926108,
#        0.47578884, 0.50000341, 0.47377452, 0.33492953, 0.54954112,
#        0.49541566, 0.54095768, 0.4495868 , 0.4871654 , 0.51237076,
#        0.48808393, 0.48120754, 0.519952  , 0.50792828, 0.52414889,
#        0.4598966 , 0.53859273, 0.35056699, 0.52637514, 0.37148828,
#        0.52328432, 0.45714943, 0.39835291, 0.47680219, 0.48079917,
#        0.52709996, 0.58097438, 0.31558467, 0.55858573, 0.44779962,
#        0.46960804, 0.32776277, 0.40463255, 0.36816873, 0.40686887,
#        0.53873119, 0.491694  , 0.40990473, 0.48624806, 0.4489985 ,
# 0.49574559, 0.48093255, 0.38655084, 0.48854129, 0.46561137])

#真实数据x_data,y_data
#使用神经网络来进行拟合,假设我们不懂y_dat与x_data之间s的关系
#定义我们使用的weight
#定义一个一行两列的weight
#因为我们的参数就是1行两列
w = tf.Variable(tf.random_uniform([ 1 , 2 ], - 1.0 , 1.0 ))
#定义我们的weight为1行两列,范围从-1.0到1.0之间
#定义我们的偏置,原方程只有1个偏置,故我们定义一个1行1列的偏置
b = tf.Variable(tf.zeros([ 1 ]))

# In [28]: w
# Out[28]: <tf.Variable 'Variable:0' shape=(1, 2) dtype=float32_ref>
# In [29]: b
# Out[29]: <tf.Variable 'Variable_1:0' shape=(1,) dtype=float32_ref>

#3.定义我们的损失函数,目标为最小化prediction与y_data之间的偏差
prediction = tf.matmul(w,x_data) + b
loss = tf.reduce_mean(tf.square(prediction - y_data))

#4.定义我们的优化器,其实影响的是反向c传播的梯度,该方法我们也可以自定义
optimizer = tf.train.GradientDescentOptimizer( 0.5 )
#0.1是学习率,就是一个变化系数,网络根据prediction-y_data的大小,进行求导后,w变化的值=(prediction-y_data)*学习率*梯度*梯度方向

train = optimizer.minimize(loss)
#定义训练为最小化误差loss

#开始tensorflow框架的运用
init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    for step in range ( 201 ):
        sess.run(train)
        if step % 20 == 0 :
        print ( "step {0} ,w= {1} ,b= {2} " .format(step,sess.run(w),sess.run(b)))

得到结果:
step0,w = [[ 0.09073986 0.25432885 ]],b = [ 0.06143282 ]
step20,w = [[ 0.14288965 0.30549458 ]],b = [ 0.2138709 ]
step40,w = [[ 0.13310951 0.28356478 ]],b = [ 0.2322896 ]
step60,w = [[ 0.12557037 0.2661502 ]],b = [ 0.24672177 ]
step80,w = [[ 0.11976979 0.25235054 ]],b = [ 0.2580708 ]
step100,w = [[ 0.11530145 0.24141914 ]],b = [ 0.26699725 ]
step120,w = [[ 0.11185528 0.23276275 ]],b = [ 0.2740195 ]
step140,w = [[ 0.10919438 0.22590993 ]],b = [ 0.27954486 ]
step160,w = [[ 0.10713752 0.2204864 ]],b = [ 0.2838931 ]
step180,w = [[ 0.10554589 0.21619518 ]],b = [ 0.28731555 ]
step200,w = [[ 0.10431294 0.21280068 ]],b = [ 0.29000968 ]

经过200次迭代后,w = [ 0.104 , 0.212 ] b = 0.290 与真实值存在一定偏差,可通过调整学习率 + loss + 迭代次数获得更好的拟合效果

猜你喜欢

转载自blog.csdn.net/Fitz_p/article/details/80864453