JDK8的HashMap

Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成。

根据 Java7 HashMap 的介绍,我们知道,查找的时候,根据 hash 值我们能够快速定位到数组的具体下标,但是之后的话,需要顺着链表一个个比较下去才能找到我们需要的,时间复杂度取决于链表的长度,为 O(n)。

为了降低这部分的开销,在 Java8 中,当链表中的元素超过了 8 个以后,会将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。

这里写图片描述

注意,上图是示意图,主要是描述结构,不会达到这个状态的,因为这么多数据的时候早就扩容了。

下面,我们还是用代码来介绍吧,个人感觉,Java8 的源码可读性要差一些,不过精简一些。

Java7 中使用 Entry 来代表每个 HashMap 中的数据节点,Java8 中使用 Node,基本没有区别,都是 key,value,hash 和 next 这四个属性,不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。

我们根据数组元素中,第一个节点数据类型是 Node 还是 TreeNode 来判断该位置下是链表还是红黑树的。

put 过程分析

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * 将指定的值与此映射中的指定键关联。如果映射之前包含键的映射,则替换旧值。
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     *
     *         之前的值与key,或null,如果key没有映射的话。(A null return也可以表示先前的map将null与key关联)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     *
     * // 第三个参数 onlyIfAbsent 如果是 true,那么只有在不存在该 key 时才会进行 put 操作
    // 第四个参数 evict 我们这里不关心
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {

        Node<K,V>[] tab;
        Node<K,V> p;
        int n, i;
        // 如果tab为空,或者tab的长度为0,
        // 第一次 put 值的时候,会触发下面的 resize(),类似 java7 的第一次 put 也要初始化数组长度
        // 第一次 resize 和后续的扩容有些不一样,因为这次是数组从 null 初始化到默认的 16 或自定义的初始容量
        if ((tab = table) == null || (n = tab.length) == 0){
            n = (tab = resize()).length;//那么就先扩展大小
        }
        // 找到具体的数组下标,如果此位置没有值,那么直接初始化一下 Node 并放置在这个位置就可以了
        if ((p = tab[i = (n - 1) & hash]) == null){
            tab[i] = newNode(hash, key, value, null);
        }else {
            // 数组该位置有数据
            Node<K,V> e; K k;
            // 首先,判断该位置的第一个数据和我们要插入的数据,key 是不是"相等",如果是,取出这个节点
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                // 如果该节点是代表红黑树的节点,调用红黑树的插值方法,本文不展开说红黑树
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 到这里,说明数组该位置上是一个链表
                for (int binCount = 0; ; ++binCount) {
                    // 插入到链表的最后面(Java7 是插入到链表的最前面)
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // TREEIFY_THRESHOLD 为 8,所以,如果新插入的值是链表中的第 9 个
                        // 会触发下面的 treeifyBin,也就是将链表转换为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 如果在该链表中找到了"相等"的 key(== 或 equals)
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        // 此时 break,那么 e 为链表中[与要插入的新值的 key "相等"]的 node
                        break;
                    p = e;
                }
            }
            // e!=null 说明存在旧值的key与要插入的key"相等"
            // 对于我们分析的put操作,下面这个 if 其实就是进行 "值覆盖",然后返回旧值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 如果 HashMap 由于新插入这个值导致 size 已经超过了阈值,需要进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

和 Java7 稍微有点不一样的地方就是,Java7 是先扩容后插入新值的,Java8 先插值再扩容,不过这个不重要。

数组扩容
resize() 方法用于初始化数组或数组扩容,每次扩容后,容量为原来的 2 倍,并进行数据迁移。

 /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * 初始化或加倍表大小。如果为空,则按照字段hreshold中初始容量目标进行分配。否则,由于我们使用的是
     * 两倍展开的幂,每个bin中的元素要么保持相同的索引,要么在新表中以两倍偏移量移动。
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;  // 这一点告诉我们为啥 使用HashMap的时候,要制定初始容量了,不指定为空,还要第一次增加大小
        int oldThr = threshold;     // 要调整大小的下一个大小值(容量*负载因数)。
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // 如果HashMap的大小已经大于2^30次方大小,那么可分配的最大大小只能是2^30-1
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
                // 将数组大小扩大一倍
            } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY){
                // 如果当前HashMap的大小扩大两倍 小于 2^30次方,而且扩展的是2的幂次方,那么大小增加一倍
                // 将阈值扩大一倍
                newThr = oldThr << 1; // double threshold
            }

        } else if (oldThr > 0) // initial capacity was placed in threshold
            // 如果下一次扩容大小大于0,就设置当前值大小为新的
            // 对应使用 new HashMap(int initialCapacity) 初始化后,第一次 put 的时候
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            // 零初始阈值表示使用默认值  如果什么都没设置,默认大小为16,扩展因子为0.75
            // 对应使用 new HashMap() 初始化后,第一次 put 的时候
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);  // 0.75*16
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 用新的数组大小初始化新的数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];// 新建了一个扩容后的Node的对象
        // 如果是初始化数组,到这里就结束了,返回 newTab 即可
        table = newTab;
        if (oldTab != null) {
            // 开始遍历原数组,进行数据迁移。
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {  // 如果oldTab中的内容不等于空
                    oldTab[j] = null;
                    // 如果该数组位置上只有单个元素,那就简单了,简单迁移这个元素就可以了
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;// 把原来的值放到新的tab中
                    // 如果是红黑树,具体我们就不展开了
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 这块是处理链表的情况,
                        // 需要将此链表拆成两个链表,放到新的数组中,并且保留原来的先后顺序
                        // loHead、loTail 对应一条链表,hiHead、hiTail 对应另一条链表,代码还是比较简单的
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            // 第一条链表
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            // 第二条链表的新的位置是 j + oldCap,这个很好理解
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

get 过程分析

相对于 put 来说,get 真的太简单了。

计算 key 的 hash 值,根据 hash 值找到对应数组下标: hash & (length-1)
判断数组该位置处的元素是否刚好就是我们要找的,如果不是,走第三步
判断该元素类型是否是 TreeNode,如果是,用红黑树的方法取数据,如果不是,走第四步
遍历链表,直到找到相等(==或equals)的 key

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            // 判断第一个节点是不是就是需要的
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                // 判断是否是红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);

                // 链表遍历
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

参考:http://www.importnew.com/28263.html

猜你喜欢

转载自blog.csdn.net/qq_21383435/article/details/80807610